期刊文献+

Boosting家族Boost-by-majority系列代表算法 被引量:4

The Typical Algorithm of Boost-by-Majority Series in Boosting Family
下载PDF
导出
摘要 1 引言 Boosting由Freund和Schapire于1990年提出,是提高预测学习系统预测能力的有效工具,也是组合学习中最具代表性的方法,其代表算法可分为Boost-by-majority和AdaBoost两个系列。Boosting操纵训练例子以产生多个假设。从而建立通过投票结合的预测器集合。Boosting在训练例子上维护一套概率分布。 Boosting is one of the most representational ensemble prediction methods. It can be divided into two series : Boost-by-majority and Adaboost. This paper briefly introduces the research status of Boosting and one of its serials-Boost-by-majority .analyzes the typical algorithms of Boost-by-majority.
出处 《计算机科学》 CSCD 北大核心 2003年第4期133-135,共3页 Computer Science
关键词 学习算法 BOOSTING算法 Boost-by-majority系列算法 组合学习 Data mining,Machine learning,Combining prediction,Algorithms
  • 相关文献

参考文献13

  • 1刁力力,胡可云,陆玉昌,石纯一.数据挖掘与组合学习[J].计算机科学,2001,28(7):73-78. 被引量:18
  • 2涂承胜,刁力力,鲁明羽,陆玉昌.Boosting家族AdaBoost系列代表算法[J].计算机科学,2003,30(3):30-34. 被引量:27
  • 3Valiant L G. A theory of the learnable. Communications of the ACM,1984,27(11) :1134~1142.
  • 4Kearns M J, Vazirani L G. Learning Boolean formulae or finite automata is as hard as factoring: [Technical Report TR-14-88].Harvard University Aiken Computation Laboratory, Aug. 1988.
  • 5Kearns M J,Vazirani L G. Cryptographic limitations on learning Boolean formulae and finite automata. Journal of the Association for Computing Machinery, 1994,41 (1) : 67~95.
  • 6Schapire R E. The strength of weak learnability. Machine Learning, 1990,5(2) : 197~227.
  • 7Freund Y. Boosting a weak learning algorithm by majority.Information and computation,1995,121(2) :256~285.
  • 8Freund Y, Schapire R E. A decision-theoretic generalization of online learning and an application to boosting.Journal of Computer and System Science, 1997,55(1) : 119~139.
  • 9Dietterich T G ,Bakiri G. Solving multiclass learning problems via error-correcting output codes. Journal of Artificial Intelligence -Research, 1995,2 : 263~286.
  • 10Schapire R E, Singer Y. Using output codes to boost multiclass learning problems.In:Machine Learning : Proc. of the Fourteenth Intl. Conf. 1997. 313~321.

二级参考文献21

  • 1[1]Dietterich T. Machine learning research: four current directions. Oregon State University, 1999
  • 2[2]Breiman L. Bagging predictors. Machine learning,1996,26(2):123~140
  • 3[3]Parmanto B,Munro O W,Doyle H R. Improving commrttee diagnosis with resampling techniques. In: Touretzky,D. S.,Mozer,M. C.,& Hesselmo,M. E. Eds. Advances in Neural Information Processing Systems,Cambridge, MA.MIT Press,1996,8:882~888
  • 4[4]Freund Y,Schapire R E. A decision-theoretic generalization of online learning and an application to boosting. Jour hal of Computer and System Science, 1997,55(1): 119~139
  • 5[5]Cherkauer K J. Human expert-level performance on a scientific image analysis task by a system using combined artificial neural networks. In: Chan, P. Ed. Working Notes of the AAAI Workshop on Integrating Multiple Learned Models,1996.15~21
  • 6[6]Schapire R E,Singer Y. Using output codes to boost multic1ass learning problems. In: Machine Learning: Proc. of the Fourteenth Iht Conf. 1997. 313~321
  • 7[7]Schapire R E,Singer Y. BoostTexer:A system for multiclass multi-label text categorization. Machine Learning,1998
  • 8[8]Freund Y. Iyer R, Schapire R E, Singer Y, An efficient boosting algorithm for combining preferences. In: Machine Learning:Proc. of the Fifteenth Iht Conf. 1998
  • 9[8]Schapire R E,Singer Y. Using output codes to boost multiclass learning problems. In: Machine Learning: Proc. of the Fourteenth International Conference,1997. 313~321
  • 10[9]Schapire P E,Singer Y. Improved boosting algorithms using confidence-related predictions. In:Proc. of the Eleventh Annual Conf.on Computational Learning Theory, 1998.80~91

共引文献43

同被引文献55

引证文献4

二级引证文献27

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部