期刊文献+

Cornell势下薛定谔方程本征值问题的代数解法 被引量:1

Algebraic Method to the Eigenvalue Problem for the Schrodinger Equation with Cornell Potential
下载PDF
导出
摘要 提出了求解球对称势作用下薛定谔方程的无穷级数代数解法;应用所提出的方法求出了库仑势和线性势的能量本征值;对Cornell势还计算了殊粲夸克偶偶素(J/Ψ)家族和底夸克偶素(γ)的质量谱,其理论结果与实验数据符合较好. It is a method of infinite series with algebra to solve the eigenvalue problem for the Schrodinger equation under symmetry potential energy of sphere. To use this method solved the power eigenvalue problem of Coulombs potential energy and linear potential energy. The quality spectra of J/w and r families are calculated for the Cornell potent, the obtained results are in good accord with the experimental data.
出处 《西南师范大学学报(自然科学版)》 CAS CSCD 北大核心 2003年第3期412-416,共5页 Journal of Southwest China Normal University(Natural Science Edition)
关键词 薛定谔方程 能量本征值 Cornell势 无穷级数代数解法 库仑势 线性势 重介子偶素 质量谱 schrodinger equation algebraic method Cornell potential heavy quarkonium mass spectrum
  • 相关文献

参考文献7

  • 1杨兴华,陈洪.重介子谱的真空色屏蔽效应[J].西南师范大学学报(自然科学版),2002,27(1):49-52. 被引量:2
  • 2杨建清.计算物理[M].上海:上海科学技术出版社,1998.82-95.
  • 3Chen Hong, Yang Jian-Ju. Light baryon spectrum in a chiral quark potential model [J]. Int Mod Phys, 1999, E8(2) : 159 - 166.
  • 4Jacobs S, Olsson M G, Suchyta C. Comparing the Svhrodinger and spinless Salpeter equations for heavy-quark bound states [J]. Phys Rev, 1986, D33(11) : 3338- 3348.
  • 5Gradshteyn S, Ryzhik I M. Table of Integrals, Series, and Products [M]. New York: Academic Press, Inc, 1980. 948-950.
  • 6Abramowitz, Steugun I A. Handbook on mathematical functions [M]. Washington: Government printing Office, 1964. 78 - 80.
  • 7Particle Data Group. Summary tables of particle physics [J]. Eur Phys J, 2000, C15: 46- 49.

二级参考文献2

共引文献1

同被引文献9

  • 1万里平,唐春雷.二阶哈密尔顿系统解的存在性与多重性(英文)[J].西南师范大学学报(自然科学版),2006,31(1):13-17. 被引量:1
  • 2万莉莉,唐春雷.一类二阶微分方程的正同宿轨(英文)[J].西南大学学报(自然科学版),2007,29(3):4-8. 被引量:1
  • 3Bartsch T, Liu Z, Weth T. Sigh Changing Solutions of Superlinear Sehr6dinger Equations [J]. Comm Partial Differential Equations, 2004, 29:25--42.
  • 4Costa D, Tehrani H. On a Class of Asymptotically Linear Elliptic Problems in RN [J]. J Differential Equations, 2001, 173(2) : 470-- 494.
  • 5Ding Y, Luan S. Multiple Solutions for a Class of Nonlinear Schrodinger Equations [J].J Differential Equations, 2004, 207(2) : 423 -- 457.
  • 6Ding Y, Lee C. Multiple Solutions for a Class of Nonlinear Schrodinger Equations with Indefinite Linear Part and Super or Asymptotically IAnear Terms [J]. J Differential Equations, 2006, 222(1) : 137 -- 163.
  • 7Jeanjean L, Tanaka K. A Positive Solution for an Asymptotically Linear Elliptic Problem on RN Autonomous at Infinity [J]. ESAIM Control Optim Calc Var, 2002, 7:597 --614.
  • 8Brezis H. Analyse Fonctionnelle [M]. Paris: Masson, 1983.
  • 9Ekeland I. Convexity Methods in Hamiltonian Mechanics [M]. Berlin: Springer-Verlag, 1990.

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部