期刊文献+

二阶微分方程的振动性(英文)

Oscillation of Second-Order Differential Equations
下载PDF
导出
摘要 建立了方程 p(t) y′α- 1 y′′+q(t) y a- 1 y=0振动的新准则 .这些准则不同于现有的许多结果 ,仅需 [t0 ,∞ )中一列子区间上的信息 ,而不是整个半直线 .根据斯图姆定理 ,我们的结果更自然并比先前的结果更“Sharp”,且能应用到∫∞t0q(t) dt=-∞的情形 . New oscillation criteria are established for the equation(p(t)y′ α-1 y′)′+q(t)y α-1 y=0that are different from most known ones in the sense that they are based on the information only on a sequence of subintervals of [t 0, ∞), rather than on the whole half line. Our results are more natural according to the sturm separation Theorem and shaper than some previous results, and can be applied to extreme cases such as ∫ ∞ t 0 q(t) d t=-∞. [WTHZ]
作者 李尚益
出处 《山西师范大学学报(自然科学版)》 2003年第2期4-10,共7页 Journal of Shanxi Normal University(Natural Science Edition)
关键词 二阶微分方程 振动性 振动准则 斯图姆定理 黎卡提变换 拟线性 Oscillation Riccati transformation Quasilinear
  • 相关文献

参考文献9

  • 1Elbert A. A half-linear secondorder differenrial equation[M]. Colloquia Math. Soc. Janos Bolyai 30: Qualiative Theory ofDifferenfial Equation, Szeged, 1979:153~180.
  • 2Elbert A. Oscillation and nonoscillation theorem for some nonlinear krdinarydifferential equations[M]. Lecture Nores in Mathematics, 964, springer, 1982:1987~212.
  • 3Kusano T, Naito Y and Ogata A. Strong oscillation and nonoscillation of quasilineardifferential equations of second order[J]. Differential Equations and Dynamical Systems 2,1994:1~10.
  • 4Mirzov J D. On sone analogs of sturm′s and Kneser′s theorems for nonlinearsystems[J]. J. Math. Anal. Appl., 1976,53:418~425.
  • 5Del pino M, Elgueta M and Manasevich R. Generalizing Hartman′s oscillation resultfor (|x′|p-2x′)′+c(t)|x|p-2x=0,p>1[J]. Houston J. Math.,1991,17:63~70.
  • 6Wang J F. On second order quasilinear oscillations[J]. Funkcial. Ekvac..,1998,41:25~54.
  • 7Kong Q. Interval criteria for oscillation of second order linear ordinarydifferential equations[J]. J. Math. Anal. Appl., 1999,229:258~270.
  • 8P Hartman. Ordinary Differential Equations 2nd ed[M]. Birkhauser, Basel, 1982.
  • 9M K Kwong. On Lyapunov′s inequality for disfocality[J]. J. Math. Anal.. Appl.,1981,83:486~494.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部