摘要
研究了Box-Jenkins模型阶次与参数的同时估计问题。基于信息压缩阵的UD分解技术和广义增广最小二乘原理,提出Box-Jenkins模型阶次与参数同时估计的一种速推算法,减少了辨识计算量,改善数值稳定性,提高了辨识精度。仿真结果表明该算法的有效性。
The problem of simultaneous identification of Box-Jenkins model order and parameter are investigated. By using the UD-factorization of the augmented information matrix (AIM) and the generalized extend least squares (GELS), an recursive algorithm for simultaneous identification of Box-Jenkins model order and parameters are presented. The proposed results can reduce computation labor, improve numerical stability and precision of identification. Simulation shows the effectiveness of the algorithm.
出处
《电机与控制学报》
EI
CSCD
北大核心
2003年第2期157-160,共4页
Electric Machines and Control
基金
中国博士后科学基金(2000-31)
河南省教育厅科研计划项目(1999510005)