期刊文献+

光滑流形在(Z2)^2作用下信息为{(2,2,0),(2,0,2),(0,2,2)}的上协边类

Cobordism Classes of Smooth Manifold Admitting a(Z2)2-action with Fixed Point Data {(2,2,0),(2,0,2),(0,2,2)}
下载PDF
导出
摘要 设(Z2)2作用于光滑闭流形Mn,其不动点集的法丛的信息为P={(2,2,0),(2,0,2),(0,2,2)},J4n,2(P)是有代表元Mn且具有上述性质的n维上协边类[Mn]构成的集合.作者通过构造上协边环MO 的一组生成元决定了J4n,2(P)的群结构. Special generators of the unoriented cobordism ring MO* are constructed to determine the groups J4n,2(P) of ndimensional cobordism classes in MOn ,containing a representative  Mn admitting a (Z2)2action with fixed point data {(2,2,0),(2,0,2),(0,2,2)}.
出处 《四川大学学报(自然科学版)》 CAS CSCD 北大核心 2003年第3期415-418,共4页 Journal of Sichuan University(Natural Science Edition)
基金 河北省自然科学基金
关键词 上协边类 不动点集 射影丛 (Z2)^2作用 cobordism class fixed point set projective space bundle (Z_2)~2-action
  • 相关文献

参考文献7

  • 1Conner P E. Differentiable Periodic Maps. Second edition[A]. Lecture Notes in math[C], Vol 738, Berlin: Springer Verlag,1979.
  • 2Pergher P L Q. (Z2)^k -actions with fixed point set of constant codimension[J]. Topology Appl, 1992,46(1 ) :55 - 64.
  • 3Stong R E. On fibering of cobordism dasses[J ]. Trans Amer Math Soc, 1973,178 (451):431 -447.
  • 4Capobianco F L. Cobordism classes represented by fiberings with fiber RP(2k + 1)[J]. Michigan Math. J,1997,24:185 - 192.
  • 5Kosniowski C,Stong R E. (Z2)^k-actiom and characteristic numbers[J]. Indiana Univ Math J. 1979,28(5) :725 - 743.
  • 6Shaker Jr R J. Dold manifolds with (Z2)^k action[J ]. Proc Amer Math soc, 1995,123(3) : 955-958.
  • 7Shaker Jr R J. Constant codimension fixed point sets of commuting involutions[J ]. Proc Amer Math soc, 1994,121(1 ) : 275-281.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部