期刊文献+

时滞Schoner竞争模型周期解的存在性 被引量:2

Existence of periodic solutions of Schoner competitive model with time-lag
下载PDF
导出
摘要 利用重合度理论的延拓引理讨论了一类具有时滞的Schoner竞争模型周期解的存在性,得到了保证系统周期解存在的易于验证的充分条件,同时所得结果可用于具有时间依赖时滞的Schoner竞争模型. The existence of periodic solutions of a category of Schoner competitive model with timelag is discussed by using the lemma in the theory of coincidence degree, so that a sufficient condition of the existence of periodic solutions for the system is obtained with a ready proof. Meantime, the result obtained can be used for the Schoner competitive model with timedependent timelag.
出处 《甘肃工业大学学报》 北大核心 2003年第2期117-120,共4页 Journal of Gansu University of Technology
基金 国家自然科学基金(10171040) 甘肃省自然科学基金(ZS011 A25 007 Z) 教育部骨干教师基金 教育部高等学校教学科研奖励计划资助
关键词 时滞Schoner竞争模型 周期解 存在性 生态数学模型 重合度 competitive model positive periodic solution coincidence degree
  • 相关文献

参考文献7

  • 1霍海峰,张利军,陈菊芳.具有时滞和扩散的n种群合作系统的渐近性[J].甘肃工业大学学报,2000,26(1):96-100. 被引量:4
  • 2Kuang Y. Delay differential equations with application in population dynamics[M]. New York: Academic Press, 1993.
  • 3Gopalsarny K, Kulenovic M R S, Ladas G. Environmental periodicity and time delays in a "food-limited" population model[J]. J Math Anal Appl, 1990, (147) :545-555.
  • 4Zhang B G, Gopalsamy K. Global attractivety and oscillationsin a periodic de_lay-logistic equations [J]. J Math Anal Appl,1990,(150): 274--283.
  • 5Freedman H I, Wu J. Periodic solutions of single-species models with periodic delay[J]. SIAM J Math Anal, 1992, (23):689-701.
  • 6Tang B R, Kuang Y. Existence, uniqueness and asymptotic stability of periodic solutions of periodic functional differential systems[J]. Tohoku Math J, 1997,(49):217-239.
  • 7Gaines R E, Mawhin J L. Coincidence degree and nonlinear differential equations[M]. Berlin: Springer, 1977.

二级参考文献4

共引文献3

同被引文献16

  • 1KUANG Y. Delay differential equations with application in population dynamics [M]. New York: Academic Press, 1993.
  • 2GOPALSAMPY K,KULENOVIC M R S, LADAS G. Environmental periodicity and time delays in a "food-limited" population model [J]. J Math Anal Appl,1990(147),545-555.
  • 3ZHANG B G, GOPALSAMY K. Global attraetivity and oscillations in a periodic delay-logistic equations [J]. J Math Anal Appl,1990(150) :274-283.
  • 4FREEDMAN H I, WU J. Periodic solutions of single-species models with periodic delay [J]. SIAMJ Math Anal,1992(23) :689-701.
  • 5TANG B R,KUANG Y. Existence, uniqueaeaa and asymptotic stability of periodic aolutiona of periodic functional diifereatial systems[J]. Tohoku Math J,1997(49) :217-239.
  • 6GAINES R E, MAWHIN J L Coincidence degree and nonlinear differential equations [M]. Berlin,Springer,1977.
  • 7FAN M,WANG K. Periodic solution of a discrete time nonautonomous ratio-dependent predator-prey system [J]. Mathematical and Computer Modelling, 2002(35) : 951-961.
  • 8AZIZ-ALAOU M A, DAHER OKIYE M. Boundedness and global stability for a predator-prey model with modified lesliegower and holling-type Ⅱ schemes [J]. Appl Math Lett, 2003, 6:1 069-1 075.
  • 9ZHAO X Q, The qualitative analysis of n-species Lotaka-Volterra periodic competition systems [J]. Math Comp Modeling. 1991,15:3-8.
  • 10GAINES R E, MAWHIN J L. Coincidence degree and nonlinear differential equations[M]. Berlin: Springer, 1977.

引证文献2

二级引证文献13

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部