摘要
作高速大范围运动的机械系统 ,由于运动和变形的耦合将产生动力刚化现象 ,传统动力学理论难以计及这种影响。通过 Kane方程在保证变形广义坐标完全精确到一阶项的前提下建立了系统一阶完备动力学方程。通过与传统动力学方程的对比分析 ,揭示了传统建模方法不仅遗失了动力刚度项 ,同时遗失了某些刚柔耦合惯性项。本文提出了一种通过对传统非完备动力学方程的修正以获得一阶完备动力学方程的新方法。
The mechanical systems undergoing high-speed and long range motion can produce the phenomenon of dynamic stiffening due to the coupling between rigid motion and elastic deflection, and traditional dynamic analysis can hardly deal with this phenomenon. The Kane's equation are used to establish the perfect first-order dynamic equations of the systems in the condition of generalized deforming coordinates which are accurate to the first-order terms completely. It is shown that the traditional dynamic equations miss not only the dynamic stiffness terms but also some coupling inertia terms by comparing the perfect first-order dynamic equations to the traditional ones. A new method of forming the perfect first-order is provided.
出处
《振动工程学报》
EI
CSCD
北大核心
2003年第2期194-197,共4页
Journal of Vibration Engineering
基金
国家自然科学基金资助项目 (编号 :19832 0 40 )