期刊文献+

脉冲方程边值问题的正解存在性 被引量:2

EXISTENCE OF POSITIVE SOLUTIONS OF BOUNDARY VALUE PROBLEMS FOR SECOND-ORDER IMPULSIVE DIFFERENTIAL EQUATIONS
下载PDF
导出
摘要  利用锥上不动点定理给出了Banach空间中一类二阶脉冲微分方程正解的存在性定理. The author uses the fixed point theory in cones is used to consider the existence of positive solutions of two point BVP for nonlinear second\|order impulsive differential equations with fixed moments.
作者 马双红
出处 《甘肃科学学报》 2003年第2期5-8,共4页 Journal of Gansu Sciences
关键词 脉冲微分方程 边值问题 不动点定理 正解 impulsive differential equations boundary value problem fixed point theorerm positive solution
  • 相关文献

参考文献3

  • 1王宏洲,葛渭高.奇性边值问题的正解存在性[J].数学学报(中文版),1999,42(1):111-118. 被引量:12
  • 2Agarwal R P, O'Regan D. Multiple nonnegative solutions for second order impulsive differential equations[J]. Appl Math Cornput, 2000, 114:51-59.
  • 3Guo D. Existence of solutions of boundary value problems for nonlinear second order impulsive differential equations in Banach spaces[J]. Jour Math Anal Appl,1994,181:407-421.

二级参考文献3

  • 1郭大钧.非线性常微分方程泛函分析[M].山东科学技术出版社,1995,2..
  • 2Yong Zhang,SIAM J Math Anal,1995年,26卷,2期,329页
  • 3郭大钧,非线性常微分方程泛函方法,1995年

共引文献11

同被引文献13

  • 1马双红,王大斌,孙建平.一类二阶脉冲微分方程的正解[J].兰州理工大学学报,2005,31(1):126-128. 被引量:2
  • 2常永奎,李万同.多值泛函微分方程的存在性和可控性[D].兰州:兰州大学博士研究生学位论文.
  • 3Yong-kui Chang Li-mei Qi.Existence Results for Second-order Impulsive Functional Differential Inclusions[J].Journal of Applied Mathematics and Stoch-astic Analysis,volume 2006,Article ID 28216:1-12.
  • 4Chang Y K,Li W T.Controllability of Second-order Differential and Integro-differential Inclutions in Banach Spaces[J].Journal of Optimization Theory and Applications,2006,129(1):77-87.
  • 5Lasota A,Opial Z.An Application of the Kaktani-Ky-Fan Theorem in the Theory of Ordinary Differential Equations[J].Academie Polonaise des Sciences,Serie des Science Mathematiques,Astronomiques et Physiques,1965,13:781-786.
  • 6K.Deimling.Multivalued Differential Equations[M].De Gruyter,Berlin,1992.
  • 7Bohnenblust H F,Karlin S.On a Theorem of Ville,In Contributions to the Theory of Games[J].Princeton University Press,1950,1:155-160
  • 8S KAUL,V LAKSHMIKANTHAM ,S LEELA. Extremal Solutions, Comparison Principle and Stability Criteria for IDE with Variable Times[J]. Nonlinear Analysis, Theory, Methods & Application. 1994, 22 (10):1263-1270.
  • 9XILIN FU ,JIANGANG QI ,YANSHENG LIU. General Comparison Principle for Impulsive Variable Time Differential Equations with Application [J]. Nonlinear Analysis. 2000,42:1421-1429.
  • 10IGNACIO BAJO. Pulse Accumulation in Impulsive Differential Equations with Variable Times [J]. Math. Anal. Appl. 1997, 216:211-217.

引证文献2

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部