期刊文献+

基于数据挖掘的异常检测模型 被引量:4

Anomaly Detection Model Based on Data Mining
下载PDF
导出
摘要 提出了一种基于数据挖掘的异常检测模型 ,按此模型建成的系统具有可扩展性、自适应性和准确性等特点。另外 ,对模型的关键技术进行了详细的阐述 ,包括 :数据预处理技术、数据挖掘算法、规则库建立和维护技术、决策等。 In this paper, anomaly detection model based on data mining is proposed. The system with this model is extensible, accurate and adaptive. Moreover, this paper discusses some key technologies in this model, which include the data pre-processing technology, algorithms of data mining, rules library's establishment and update, decision-making and so on.
作者 黄莹
出处 《电子工程师》 2003年第6期11-13,共3页 Electronic Engineer
关键词 数据挖掘 异常检测模型 网络安全 分类器 计算机网络 入侵检测系统 anomaly detection, data mining, network security, classifier
  • 相关文献

参考文献5

  • 1连一峰,戴英侠,王航.基于模式挖掘的用户行为异常检测[J].计算机学报,2002,25(3):325-330. 被引量:84
  • 2杨向荣,宋擒豹,沈钧毅.基于数据挖掘的智能化入侵检测系统[J].计算机工程,2001,27(9):17-18. 被引量:31
  • 3HanJ KamberM.数据挖掘概念与技术[M].北京:机械工业出版社,2001.185.
  • 4W Lee , S J Stolfo. Data Mining Approaches for Intrusion Detection. Proceeding of the 7th USENIX Security Symposium, San Antonio, TX, 1998.
  • 5W Lee , S J Stolfo, K W Mok. Mining Audit Data to Build Intrusion Detection Models. Proceedings of the 4th International Conference on Knowledge Discovery and Data Mining, New York, 1998.

二级参考文献8

  • 1[1]Lee Wenke, Stolfo S J. Data mining approaches for intrusion detection. In: Proc the 7th USENIX Security Symposium, San Antonio, TX, 1998
  • 2[2]Lee Wenke, Stolfo S J, Mok K W. A data mining framework for building intrusion detection models. In: Proc the 1999 IEEE Symposium on Security and Privacy, Berkely, California, 1999. 120-132
  • 3[3]Lee Wenke. A data mining framework for constructing features and models for intrusion detection systems[Ph D dissertation]. Columbia University, 1999
  • 4[4]Paxson Vern. Bro: A system for detecting network intruders in real-time. In: Proc the 7th USENIX Security Symposium, San Antonio, TX, 1998
  • 5[5]Agrawal Rakesh, Srikant Ramakrishnan. Fast algorithms for mining association rules. In: Proc the 20th International Conference on Very Large Databases, Santiago, Chile, 1994
  • 6[6]Agrawal Rakesh, Srikant Ramakrishnan. Mining sequential patterns. IBM Almaden Research Center, San Jose, California:Research Report RJ 9910, 1994
  • 7[7]Chen M, Han J, Yu P. Data mining: An overview from database perspective. IEEE Trans Knowledge and Data Engineeing, 1996,8(6):866-883
  • 8Tan K M C,Application Neural Networksto Unix Computer Security

共引文献121

同被引文献25

  • 1钱昌明,李国庆,黄皓.分类异常点检测算法及在IDS模型中的应用[J].计算机应用研究,2006,23(4):94-96. 被引量:2
  • 2王宏鼎,童云海,谭少华,唐世渭,杨冬青.异常点挖掘研究进展[J].智能系统学报,2006,1(1):67-73. 被引量:22
  • 3W Lee , S J Stolfo. Data Mining Approaches for Intrusion Detection. Proceeding of the 7thUSENIX Security Symposium, San Antonio,TX, 1998.
  • 4Han Jiawei Kamber M.数据挖掘概念与技术[M].北京:机械工业出版社,2001..
  • 5HanJiawei KamberM.Data Mining Concept and Technique[M].北京:高等教育出版社,2001..
  • 6Witten Ian H, Frank Eibe. Data mining:practical machine learning tools and techniques with Java implementations. Morgan Kaufmann, 1999
  • 7Collections of datasets. http://www. cs. waikato. ac. nz/ml/weka/
  • 8Knorr E,Ng R. A unified notion of outliers:Properties and computation. In:Proc. 1997 Int. Conf. Knowledge Discovery and Data Mining(KDD'97), Newport Beach ,CA ,Aug. 1997. 219~222
  • 9Knorr E,Ng R. Algorithms for mining distance-based outliers in large datasets. In: Proc. 1998 Int. Conf. Very Large Data Bases(VLDB'98), New York,Aug . 1998. 392~403
  • 10Petrovskiy M I. Outlier Detection Algorithms in Data Mining Systems. Programming and Computing Software New York, 2003,029 (004): 228~237

引证文献4

二级引证文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部