摘要
本文通过统计分析 ,选取影响银川地区疾病发病率的主要气象因素 ,将其作为输入变量经多层前馈型神经网络的BP算法进行学习训练 ,建立了疾病发病率的人工神经网络 (ANN)预报模型。分析了结构参数对模型效果的影响情况 ,发现学习率和动量因子对达到训练目的无大的影响 ,而训练精度、输入层节点数和隐含层节点数是模型的关键。但只要输入层节点数达到一定数量 ,改变输入层节点数并不影响模型质量 。
This paper selects those elements which have significant effect on diseases by statistical analysis in Yinchuan area and sets up ANN model for the incidence of the diseases by putting those elements into many-level BP arithmetic of Feed-forward Backprop neural network as input varieties to study for training.And the outcome of it is compared with that of statistical model.The influence of model parameters on the fitting and prediction accuracy of model was studied.It can be concluded that the learning speed and momentum elements are little useful to the training goal,but the number of input and hidden notes are important.While the input number is up to a definite number,it won't influence the quality of model to change the input nodes.But the hidden nodes is more important to the model.
出处
《气象科学》
CSCD
北大核心
2003年第2期153-160,共8页
Journal of the Meteorological Sciences
基金
国家自然科学基金资助项目 (资助号 40 175 0 2 9)
关键词
疾病发病率
BP神经网络
模型参数
Incidence of a disease BP neural network Model parameter