期刊文献+

基于卷积神经网络的模式分类器 被引量:7

Building pattern classifiers with convolutional neural networks
下载PDF
导出
摘要 研究了使用卷积神经网络((Convolutional Neural Networks,CNNS)构造模式分类器,并用于文本/图像分割和文本检测的可能性.CNNs可以避免显式(直接)特征取样.更为重要的是,CNNs能直接运作于灰度图像,使其应用变得直截了当.对诸如卷积核尺度、网络收敛速度等具体算法实现问题进行了讨论,并给出CNNs在汉字文本/图像分割和文本检测方面的各种实验结果. This paper studies the possibility of buiding pattern clssifiers for text/picture segmentation and text detection problems with convolutional neural networks (CNNs). Using CNN, explicit feature extraction can be avoided. More importantly, CNN can directly operate on grey level images, making its application straightforward. The issues such as kernel size, convergence speed, etc. are discussed. The results of the experiments on Chinese text/ picture segmentation and text detection are presented.
作者 李葆青
出处 《大连大学学报》 2003年第2期19-23,共5页 Journal of Dalian University
关键词 卷积神经网络 模式分类器 灰度图像 人工智能 算法 图像分割 pattern classification convolutional neural networks artificial intelligence
  • 相关文献

参考文献6

  • 1[1]E BAUM, D HAUSSLER. What Size Net Gives Valid Generalization[J]. Neural Computation, 1989, 1:151-160.
  • 2[2]R JACOBS. Increased Rates of Convergence Through Leaning Rate Adaptation[J]. Neural Networks, 1988, 1: 295-307.
  • 3[3]Y LECUN, Y BENQUO. Handbook of Brain Theory and Neural Networks[M]. MIT Press, 1995, 255-258.
  • 4[4]R LIPPMANN. An Introduction to Computing with Neual Nets[J]. IEEE ASSP Magazine, 1987, 4: 22.
  • 5[5]E S ACKINGER, B BOSER, Y LECUN, L JACLEL. Application of the ANNA Neural Network Chip to High-Speed Character Recognition[ J ]. IEEE Transactions on Neural Networks, 1992, 3: 498-505.
  • 6[6]D H WOLPERT. Stacked generalization[J]. Neural Net-works, 1992, 5:241-259.

同被引文献64

引证文献7

二级引证文献30

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部