摘要
用δ(M,F)表示亏格为n的可定向闭3-流形M的Heegaard分解(M,F)的圆片指数,本文证得:(1)(M,F)不是强不可约的当且仅当δ(M,F)≥2;(2)(M,F)是可约的当且仅当δ(M,F)≥max(2,n};(3)若2≤δ(M,F)<n,则M包含一个正亏格的不可压缩曲面。
For a Heegaard splitting (M,F) with genus n of an orientable closed 3-manifold M, we introduce the concept of disk index, δ(M,F), of (M,F), and infer that(1) (M,F) is not strongly irreducible iff δ(M,F)≥2;(2) (M,F) is reducible iff δ(M,F)≥max{2,n};(3) 2≤δ(M,F)<n implies that M contains a 2-sided incompressible surface with positive genus.Thus we supply and improve the main work of Casson and Gordon in [3].
出处
《吉林大学自然科学学报》
CAS
CSCD
1992年第1期1-4,共4页
Acta Scientiarum Naturalium Universitatis Jilinensis
基金
国家自然科学基金
关键词
可约性
强不可约性
圆片指数
reducibility
strong irreducibility
disk index