摘要
本文在一定的条件下证明了DiriChlet问题■在W^(2,p)(Ω)中的可解性,其中p>1当N=1或2;P≥2N/(N+2)当N≥3,而不象以前关于这方面的工作要限制p>N。
The present paper proves that under certain assumptions on f the Dirichlet problem is solvable in W^(2,p)(Ω) with p>1 when N=1, 2 and p≥2N/(N+2) when N≥3, which is different from the other papers on this problem in that they are all limited to p>N.
出处
《吉林大学自然科学学报》
CSCD
1992年第2期30-32,共3页
Acta Scientiarum Naturalium Universitatis Jilinensis
关键词
椭圆方程
可解性
不动点定理
elliptic equations
solvability
fixed point theorem