期刊文献+

基于自适应性模型的入侵检测系统研究

Study of Intrusion Detection System Based on Adaptive Model
下载PDF
导出
摘要 适应性模型是一种自动建立的基于数据挖掘的入侵检测系统检测模型。在利用入侵检测传感器收集相同数据的同时,系统自动建立适应性模型。由于不需要建立训练集,从而减少了配置入侵检测系统的花费。本文提出了一种自动模型及其系统结构的有效实现,并用算法自动建立了在噪声数据上的异常检测模型。 Adaptive model is a detecting model which is automatically built of intrusion detection systems based on data-mining. While using the same data collected by intrusion detection sensors, adaptive model is automatically built. This reduces the configuration cost of intrusion detecting system because it dose not require to build training sets. An automatic model and its system architecture are presented, and an algorithm that automatically builds abnormally detecting models on noisy data is realized.
出处 《燕山大学学报》 CAS 2003年第2期178-181,184,共5页 Journal of Yanshan University
关键词 入侵检测 数据挖掘 训练数据 intrusion detecting data mining training data
  • 相关文献

参考文献4

  • 1范明 孟小峰.数据挖掘概念与技术[M].北京:机械工业出版社,2001..
  • 2Teng H S, Chen K, Lu S S. Adaptive real-time anomaly detection using inductively generated sequential patterns. In Proceedings of the IEEE Symposium on Research in Security and Privacy, Oakland CA, May 1990,278-284.
  • 3Lee W, Stolfo S J,Mok K.Date Mining in work flow environments:Experiences in intrusion detection. In proceedings of the 1999 Conference on Knowledge Discovery and Date Mining (KDD- 1999),1999.
  • 4Eleazar Eskin. Anomally detection over noisy data using learned probility distributions. In Proceedings of the Seventeenth International Conference on Machine Learning (ICML-2000), 2000.

共引文献63

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部