期刊文献+

基于进化策略算法拟合多阻尼比反应谱的地震动仿真 被引量:2

Simulation of earthquake ground motions compatible with multi-damping-ratio-spectra based on evolutionary strategy algorithm
下载PDF
导出
摘要 拟合多阻尼比反应谱的人造地震波是新抗震规范提出的要求。本文引入多目标优化概念和进化策略算法,提出拟合多阻尼比反应谱的地震动仿真方法,解决了传统地震动仿真中的多阻尼比反应谱拟合精度较差的问题。算例表明,该方法可获得优化问题的近似Pareto最优解集,在拟合多阻尼比反应谱的人造地震波集系的仿真方面有传统方法所不能比拟的优势,产生的人造波或人造波集系可满足工程抗震设计需要。 Simulation of earthquake ground motions compatible with multidamping ratiospectra is demanded by the code for seismic design of buildings. By introducing the concept of multiobjective optimization and evolutionary strategy algorithm a method for simulation of ground motions is proposed in this paper. The precision of simulation of ground motions compatible with multidamping ratiospectra may be improved comparing with the traditional method. The Pareto optimal solution set can be obtained conveniently by the simulation method, which is difficult by the traditional one. It is adequate to meet the needs of simulation of ground motions compatible with multidamping ratiospectra in seismic design.
出处 《世界地震工程》 CSCD 2003年第2期33-38,共6页 World Earthquake Engineering
基金 国家自然科学基金资助项目(59878055 50008017)
关键词 进化策略算法 多阻尼比反应谱 人造地震波 抗震规范 地震动 仿真方法 抗震设计 multi-objective optimization evolutionary strategy algorithm multi-damping-ratio-spectra simulation of ground motion
  • 相关文献

参考文献7

  • 1赵凤新,胡聿贤.地震动非平稳性与幅值谱和相位差谱的关系[J].地震工程与工程振动,1994,14(2):1-6. 被引量:79
  • 2李英民.[D].重庆:重庆建筑大学,1999.
  • 3.GB5001 1-2001.建筑抗震设计规范[S].,..
  • 4Goldberg D E. Genetic Algorithms in Search, Optimization, and Machine Learning E M]. Massachusetts: Addison-Wesley Reading, 1989. 69-93.
  • 5Cheng Y, Li D. Multi-objective optimization design with Pareto genetic algorithm[J]. J. of Structural engineering, 1997, 123(9) : 35-39.
  • 6Crossley W, Cook A, Fanjoy D. Using the two branch turnament genetic algorithm for multiobjective design [ J ], AIAA Journal, 1999, 37 (2) :56-61.
  • 7Li B, Jiang W S. Optimizing complex functions by chaos search[J]. International Journal of Cybernetics and Systems, 1998, 29: 409-419.

二级参考文献1

共引文献79

同被引文献27

  • 1寿涌毅.多项目资源配置的拉格朗日分解方法[J].数量经济技术经济研究,2004,21(8):98-102. 被引量:14
  • 2芦金婵,李乃成,王伟东.基于最佳进化方向的多目标遗传算法[J].计算机工程与应用,2005,41(19):73-76. 被引量:5
  • 3张利彪,周春光,刘小华,马铭.粒子群算法在求解优化问题中的应用[J].吉林大学学报(信息科学版),2005,23(4):385-389. 被引量:39
  • 4邹振宇,江全元,张鹏翔,曹一家.PSS与SVC多目标协调设计[J].电力系统及其自动化学报,2005,17(4):66-70. 被引量:9
  • 5ZITZLER E, LAUMANNS M, THIELE L. Improving the strength Pareto evolutionary algorithm [ J ]. Evolutionary Computation, 2001,5 (2) :121-129.
  • 6DEB K,PRATA P A,AGARWAL S,et al. A fast and elitist multi-objective genetic algorithm : NSGA-II [ J ]. Evolutionary Computation, 2002,6 (6) : 182-197.
  • 7HWANG S F, HE R S. Improving real-parameter genetic algorithm with simulated annealing for engineering problems [ J ]. Advances in Engineering Software ,2006,37(6) :406-418.
  • 8Mendesa J J M, Gonclvesb J F, Resendec M G C. A random key based genetic algorithm for the resource constrained project scheduling problem [ J ]. Computers & Operations Research, 2009, 36(1) :92-109.
  • 9Vicente Vails, Francisco Ballestin, Sacramento Quintanilla. A hybrid genetic algorithm for the resource-constrained project scheduling problem[J]. European Journal of Operational Research, 2008,185 (2) :495-508.
  • 10Hartmann S. A self-adapting genetic algorithm for project scheduling under resource constraints [ J ]. Naval Research Logistics, 2002,49(5) :433-448.

引证文献2

二级引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部