期刊文献+

三维散乱数据曲面重构技术综述 被引量:7

A Survey of Curved Surface Reconstruction Technique from 3-D Scattered Data
下载PDF
导出
摘要 三维散乱数据白面重构技术是复杂曲面测量几何造型系统的关键技术。它有整体拟合和局部拟合两种方法。局部拟合因其具有与通用CAD系统相同的数学模型,所以它是复杂曲面测量几何造型系统的常用方法。目前,国内外专家学者在这方面做了大量的理论研究和实际探索,并取得丰硕成果。这种将测量系统与造型系统结合起来的曲面重构技术在工程实际中具有广阔的应用前景。 The technology on curved surface reconstruction from 3-D scattered data is the key technology of measure and geometric modeling systems for complicated curved surface. It includes unitary fitting and local fitting methods. The local fitting method is a common method of measure and geometric modeling systems for complicated curved surface because of its mathematical model the same as that of current CAD system. The technology, which links a measure system and geometric modeling system, will take on a wide prospect in practical application of engineering. At present, domestic and foreign experts have acquired plentiful and substantial achievements theoretically as well as practically.
出处 《工程图学学报》 CSCD 2003年第2期143-149,共7页 Journal of Engineering Graphics
关键词 三维散乱数据 曲面重构 曲面造型 数据拟合 三角化 Watson算法 Lawson算法 网格前沿法 曲面插值 computer application delaunay triangulation survey curve surface reconstruction
  • 相关文献

参考文献17

  • 1Pratt V. Direct least squares fitting of algebraic surface [J]. Computer Graphics, SIGGRAPH'87 Proceedings,1987, 21(4): 145-152.
  • 2Muraki S. Volumetric shape description of range data using blobby model [J]. Computer Graphics,SIGGRAPH'91 Proceedings, 1991, 25(4): 227-235.
  • 3Hastie T, Stuetzle W. Principal curves [J]. JASA, 1989,8(4): 502-506.
  • 4Vemuri B C. Representation and recognition of objects fi'om dense range maps [D]. PhD thesis. Department of Electrical and Computer Engineering. University of Texas at Austin, 1987.
  • 5Brinkly J F. Knowledge driven ultrasonic three-dimensional organ modeling [J]. IEEE Transaction on Pattem Analysis and Machine Intelligence, 1985,7(4): 431--441.
  • 6Goshtashy A, O'Neill W D. Surface fitting to scattered data by a sum of Gaussians [J]. Computer Aid Geometric Design, 1993,10: 143-156.
  • 7Bowyer A. Computing Dirichlet tessellations [J]. The Computer Journal, 1981, 24:162-166.
  • 8Green P J, Sibson R. Computer dirichlet tessellations in the plane [J]. The Computer Journal, 1978, 21(20):168-173.
  • 9Lee D T, Schachter B J. Two algorithms for constructing a delaunay trianglation [J]. International Journal of Computer and Information Science, 1980, 9(3): 219.
  • 10Pratt V. Direct least squares fitting of algebraic surface [J]. Computer Graphics, SIGGRAPH'87 Proceedings, 1987, 21(4): 145-152.

同被引文献51

引证文献7

二级引证文献23

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部