期刊文献+

Tandem organic light-emitting diodes with buffer-modified C60/ZnPc as charge generation layer

Tandem organic light-emitting diodes with buffer-modified C60/ZnPc as charge generation layer
原文传递
导出
摘要 In this paper, a significant enhancement in current efficiency of the green tandem organic light-emitting diodes(TOLEDs) is demonstrated, which is based on a buffer-modified charge generation layer(CGL) of fullerene carbon(C60)/zinc-phthalocyanine(ZnPc). Al and MoO3 were used as the buffer-modified layers on both sides of the bilayer C60/ZnPc, respectively. Experimental results show that the inserted Al and MoO3 layers can effectively increase the electron extraction of the CGL for obtaining the device performance enhancement. Compared with that of the green TOLEDs without buffer-modified layers in CGL(37.3 cd·A-1), the current efficiency of the green TOLEDs is increased to 54.1 cd·A-1. Further study results find that the performance can also be improved by optimizing the thickness of Al in the CGL. The maximum current efficiency and maximum luminance of the green TOLEDs achieve 63.5 cd·A-1 and 17 873 cd·m-2, respectively, when the multilayer structure of the CGL is Al(3 nm)/C60(5 nm)/ZnPc(5 nm)/MoO3(3 nm). In this paper, a significant enhancement in current efficiency of the green tandem organic light-emitting diodes(TOLEDs) is demonstrated, which is based on a buffer-modified charge generation layer(CGL) of fullerene carbon(C60)/zinc-phthalocyanine(ZnPc). Al and MoO3 were used as the buffer-modified layers on both sides of the bilayer C60/ZnPc, respectively. Experimental results show that the inserted Al and MoO3 layers can effectively increase the electron extraction of the CGL for obtaining the device performance enhancement. Compared with that of the green TOLEDs without buffer-modified layers in CGL(37.3 cd·A-1), the current efficiency of the green TOLEDs is increased to 54.1 cd·A-1. Further study results find that the performance can also be improved by optimizing the thickness of Al in the CGL. The maximum current efficiency and maximum luminance of the green TOLEDs achieve 63.5 cd·A-1 and 17 873 cd·m-2, respectively, when the multilayer structure of the CGL is Al(3 nm)/C60(5 nm)/ZnPc(5 nm)/MoO3(3 nm).
作者 陈爱 王振 谢嘉凤 王培 CHEN Ai;WANG Zhen;XIE Jia-feng;WANG Pei
出处 《Optoelectronics Letters》 EI 2019年第3期185-189,共5页 光电子快报(英文版)
基金 supported by the Scientific and Technological Research Foundation of Chongqing Municipal Education Commission(No.KJ1600439) the Basic and Advanced Technology Research Project of Chongqing Municipality(No.cstc2018jcyjAX0462) the Scientific and Technological Research Foundation of Chongqing Municipal Education Commission(No.KJ1500404)
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部