期刊文献+

数据立方梯度挖掘的研究

The Research of the Cube Gradient Mining
下载PDF
导出
摘要 With the rapid development of data warehouse and OLAP techniques, the researchers begin to pay atten-tion to the data mining in the data cube. Recently, Dr. T. Imielinski etc. firstly presented the problem of the cubegradient mining that is a generalization of association rule in data cube. In this paper, we firstly introduce the relatedconcepts of data cube and condensed cube with an emphasis. Then we introduce some interesting problems related tothe cube gradient mining including: constrained cube gradient mining and the query language of cube gradient. Final-ly, we introduce several issues on the combination of cube gradient and the condensed cube, that is, the cube gradientmining in the materialized data cube and the integration of cube gradient mining and cube browse. With the rapid development of data warehouse and OLAP techniques, the researchers begin to pay attention to the data mining in the data cube. Recently, Dr. T. Imielinski etc. firstly presented the problem of the cube gradient mining that is a generalization of association rule in data cube. In this paper, we firstly introduce the related concepts of data cube and condensed cube with an emphasis. Then we introduce some interesting problems related to the cube gradient mining including: constrained cube gradient mining and the query language of cube gradient. Finally , we introduce several issues on the combination of cube gradient and the condensed cube, that is, the cube gradient mining in the materialized data cube and the integration of cube gradient mining and cube browse.
出处 《计算机科学》 CSCD 北大核心 2003年第5期37-41,共5页 Computer Science
关键词 数据仓库 多维数据模型 数据立方 梯度挖掘 数据挖掘 数据库 Data cube, Condensed cube, Cube gradient
  • 相关文献

参考文献16

  • 1Agarwal S, et al. On the computation of multidimensional aggregates. VLDB, 1996.
  • 2Beyer K, Ramakrisbnan R. Bottom-up computation of sparse and iceberg cubes. ACM SIGMOD, 1999.
  • 3Chaudhuri S, Dayal U. An overview of data warehousing and OLAP technology. ACM SIGMOD Record, 1997,26 : 65~74.
  • 4Han J. Towards On-Line Analytical Mining in Large Databases.ACM SIGMOD Record, Mar. 1998.97~107.
  • 5Palpanas T. Knolwedge Discovery in Data Warehouses. ACM SIGMOD Record, 2000.
  • 6Han J, Pei J, Dong G, Wang K. Efficient computation of iceberg cubes with complex measures. ACM SIGMOD,2001.
  • 7Imielinski T, Khachiyan L,Abdulghani A. Cubegrades: Generalization Association Rules: [Tech. Rep]. Dept Computer Science,Rutgers University, Aug. 2000.
  • 8Wang Wei, Feng Jianlin, Lu Hongjun, Yu J X. Condensed Cube:An Effective Approach to Reducing Data Cube Size. IEEE ICDE,2002.
  • 9Sarawagl S,Agrawal R,Megiddo N. Discovery driven exploration of OLAP and data cubes. EDBT 1998.
  • 10Gray J,Bosworth A, Layman A,Pirabesh H. Data Cube:A Relational Aggregation Operator Generalizing Group-By, Cross-Tab, and Sub-Totals. IEEE ICDE, 1996.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部