期刊文献+

核方法在人脸识别中的应用 被引量:2

Face Recognition Using Kernel Methods
下载PDF
导出
摘要 Kernel function is the function which computes dot product in feature spaces. Both the SVMs and kernelPCA are kernel-based learning methods. In this paper, the SVMs and kernel PCA are used to tackle the face recogni-tion problem. SVMs are classifiers which have demonstrated high generalization capabilities. Kernel PCA is a featureextraction technique which is proposed as a nonlinear extension of a PCA. We illustrate the potential of SVMs andkernel PCA on the Yale database and compare with a PCA based algorithm. The experiments indicate that SVMs andkernel PCA are superior to the PCA method. Kernel function is the function which computes dot product in feature spaces. Both the SVMs and kernel PCA are kernel.based learning methods. In this paper, the SVMs and kernel PCA are used to tackle the face recognition problem. SVMs are classifiers which have demonstrated high generalization capabilities. Kernel PCA is a feature extraction technique which is proposed as a nonlinear extension of a PCA. We illustrate the potential of SVMs and kernel PCA on the Yale database and compare with a PCA based algorithm. The experiments indicate that SVMs and kernel PCA are superior to the PCA method.
出处 《计算机科学》 CSCD 北大核心 2003年第5期82-84,共3页 Computer Science
关键词 人脸识别 核方法 模式识别 人脸图像 几何特征 模板匹配 图像识别 图像处理 Kernel methods,Face recognition,Support vector machines,Kernel principal component analysis,Principalcomponent analysis
  • 相关文献

参考文献22

  • 1Chellappa R ,Wilson C L ,Sirohey S. Human and machine recognition of faces: A survey. Proc. IEEE, 1995,83:705~741.
  • 2Samal A, lyengar P A. Automatic recognition and analysis of human faces and facial expressions: A survey. Pattern recognition,1992,25:,65~77.
  • 3Valentin D,et al. Connectionist models of face processing: A survey. Pattern recognition, 1994,27 : 1209~ 1230.
  • 4Beymer D,Poggio T. Face recognition from one example view. In:IEEE Fifth Intl. Conf. Computer Vision,June 1995. 500~507.
  • 5Bledsoe W. Man-machine facial recognition. Panoramic Research Inc, Palo Alto, CA, 1966, Rep PRI:22.
  • 6Goldstein A J, Harmaon L D, Lesk A B. Identification of human faces. Proc. of the IEEE,1971,59(5):748~760.
  • 7Brunelli R, Pogglo T. Face recognition: Features versus templates. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1993,15:1024~1052.
  • 8Wiskott L, et al. Face recognition by elastic bunch graph matching. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1997,19 (7) : 775~770.
  • 9Turk M A,pentland A P. Eigenfaces for recognition. J. Cognitive Neurosci, 1991,3(1) : 71~86.
  • 10Belhumeur P N ,Hespanha J P,Kriegman D J. Eigenfaces vs. fisherfaces: Recognition using class specific linear projection. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1997,19(7) :711~720.

同被引文献19

  • 1何国辉,甘俊英.PCA-LDA算法在性别鉴别中的应用[J].计算机工程,2006,32(19):208-210. 被引量:19
  • 2[1]Martin B. Wilk. A Framework for Measuring Research and Development Expenditures in Canada[J]. Statistics Canada, catalogue 88 -506E, preface.
  • 3[3]B. Scholdopf, A. Smola, and K. Müller. Non - linear component analysis as a kernel eigenvalue problem[ J]. Neural Comput. , 1998,(10).
  • 4[4]K. müller, S. Mika,G. Ratsch, K. Tsuda and B. Scholkopf. An introduction to kernel-based learning algorithms [ J ]. IEEE Transactions Neural network, 2001 , ( 12 ): 181 - 201.
  • 5[5]B. Seholkopf,A. Smola and K. Müller. Kernel principal component analysis. Advances in Kernel Methods-Support Vector Learning [ J].B. Seholkopf, C. Burges and A. Smola, Eds. Cambridge, MA: MIT Press, 1999,196 - 201.
  • 6[8]帕特-安纳德,斯尤伯格著,王艳清等译.MATLAB手册[M].北京:机械工业出版社,2000.
  • 7Turk M,Pentland A. Eigenfaces for Recognition[ J]. Cognitive Neuro Science, 1991,3 ( 1 ) :71-86.
  • 8Belhumeur P N, Hespanha J P, Kriengman D J. Eigenfaces vs. Fisherfaces: Recognition Using Class Specific Linear Projec- tion[ J]. IEEE Trans. on Pattern Analysis and Machine Intel- ligence,1997,19(7) :711-720.
  • 9Yang M H. Kernel eigenfaces vs kernel fisherfaces:face recog- nition using kernel methods[ C ]//Proc of 5th IEEE Int Conf on Automatic Face and Gesture Recognition. Washington DC : [ s. n. ] ,2002:215-220.
  • 10Chen Xin, Flynn P J, Bowyer K W. PCA-based Face Recogni- tion in Infrared Imagery: Baseline and Comparative Studies [C]//Proc of the IEEE International Workshop on Analysisand Modeling of Faces and Gestures. Nice, France : [ s. n. ], 2003 : 127-134.

引证文献2

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部