期刊文献+

一种基于改进的遗传算法的块匹配运动估计方法 被引量:4

A Modified Genetic Algorithm Based Block Matching Motion Estimation Method
下载PDF
导出
摘要 块匹配方法(Block Matching Algorithm,简称BMA)是目前广泛使用的运动估计方法,但该方法的最大缺点是容易陷于局部最优,这主要是由搜索模式决定的。而遗传算法(Genetic Algorithm,简称GA)是一种具有广泛适应性的全局最优的搜索算法。将块匹配方法的局域性搜索与遗传算法的全局性搜索结合起来,本文提出了一种基于改进的遗传算法的块匹配运动估计方法。实验证明,该方法的平均绝对误差(MAE)接近全搜索(FSS),优于三步法(TSS),而运算量相对较低,接近三步法。 The Block Matching Algorithm (BMA) is currently widely used in Motion Estimation, but it is suboptimum and susceptible to be trapped into local optimum due to its specific searching pattern. While, Genetic Algorithm (GA) is a global optimum searching method used in many fields which require global optimum from large data. This paper combines BMA definite local searching with GA elective global searching and proposes a block matching algorithm based on a modified GA. The simulations show that the Mean Absolute Error (MAE) performance of this new algorithm is similar to that of FSS, better than TSS, while the computation complexity of it is lower than that of FSS and similar to TSS.
作者 龚涛 丁润涛
出处 《信号处理》 CSCD 2003年第3期207-210,共4页 Journal of Signal Processing
  • 相关文献

参考文献8

  • 1洪波,庄健敏,余松煜.基于时空相关性的自适应运动估计方法[J].计算机工程,2000,26(8):50-51. 被引量:6
  • 2洪波,余松煜.基于对象的菱形搜索运动估计方法[J].数据采集与处理,2001,16(1):110-114. 被引量:5
  • 3程世龙,戴卫恒,程宏煌,姚苏苏.基于进化规划的运动估计算法[J].通信学报,2001,22(6):113-116. 被引量:1
  • 4J. H. Holland, Adaptation in Natural and Artificial Systems [M], 1st ed., Michigan University Press, 1975;2nd ed., Cambridge, MA: MIT Press 1992.
  • 5Zhu Ce, Lin Xiao, A novel hexagon-based search algorithm for fast block motion estimation [A]. In: IEEE ICA SSP'01 [C], Singapore, 2001: 1593~1596.
  • 6Guanghua Qiu, Chaohua Hou, A new fast Algorithm for the Block Motion Vector [A], In Proc. of ICSP'96, 1996,Beijin: 1233~1236.
  • 7Xu Yuelei, Bi Duyan, Mao Baixin, A Genetic Algorithm for Motion Estimation [A], In Proc. of ICSP2000 [C],2000, Beijing: 1058~1062.
  • 8Man E So, Angus Wu, Four-Step Genetic Search for Block Motion Estimation [J], IEEE Trans. of SP, 1998,2(2) : 1393~1397.

二级参考文献6

  • 1Tsai Jyichang,Signal Processing:Image Comm,1998年,13卷,119页
  • 2Lu J,IEEE Trans Circuit Syst Video Technol,1997年,7卷,14期,429页
  • 3Zhu S,Proc Int Conf Information Communication Processing,1997年,292页
  • 4Li R,IEEE Trans Circuit Syst Video Technol,1994年,4卷,438页
  • 5陈国良,遗传算法及其应用,1996年
  • 6Li R,IEEE Trans CASVT,1993年,3卷

共引文献8

同被引文献39

  • 1刘伟峰,庄奕琪,屈文博,汤华莲.基于TMS320DSC21的视频编码系统设计[J].现代电子技术,2005,28(12):76-79. 被引量:1
  • 2郑伟,刘文耀,王涌天.一种结合遗传算法和钻石搜索的多模式快速运动估计方法[J].电子学报,2006,34(10):1911-1916. 被引量:7
  • 3PO Lai-man, MA Wing-Chung. A novel four-step search algorithm for fast block motion estimation[ J]. IEEE Trans on Circuits and Systems for Video Technology, 1996, 6(3) :313-317.
  • 4ZHU Shan, MA Kai-kuang. A new diamond search algorithm for fast matching motion estimation [ J ]. IEEE Trans on Image Process- Jng, 2000, 9(2):287-290.
  • 5NIE Y, MA K K. Adaptive rood pattern search for fast block-matching motion estimation [ J]. IEEE Trans on Image Processing, 2002, 11 (12) :1442- 1448.
  • 6YUAN Xue-dong, SHEN Xiao-jing. Block matching algorithm based on particle swarm optimization for motion estimation [ C ]//Proc Of International Conference on Embedded Software and Systems. 2008:191-194.
  • 7RANGANADHAN D, GORPUNI P. An efficient bidirectional frame prediction using particle swarm optimization technique [ C ]//Proc of International Conference on Advances in Recent Technologies in Communication and Computing. Kottayam, 2009: 42-46.
  • 8ZHAN Zhi-hui, ZHANG Jun, LI Yun, et al. Adaptive particle swarm optimization[J]. IEEE Trans on Systems Man and Cybernetics Part B: Cybernetics, 2009, 39(6): 1362-1381.
  • 9Rick Rarick and Dan Simon,et al..Biogeography-based optimization and the solution of the power flow problem[C].Proceedings of the 2009 IEEE International Conference on Systems,Man,and Cybernetics San Antonio,TX,USA,October 2009:1003-1008.
  • 10Panchal V K and Singh Parminder,et al..Biogeography based satellite image classification[J].International Journal of Computer Science and Information Security,2009,6(2):269-274.

引证文献4

二级引证文献16

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部