摘要
讨论了毕竟正则半群 S的同余格上包含一些特殊同余的同余类 K -类 ( T-类 ) .ρK 是群同余 ( Clifford同余 ,半格同余 )的 K-类ρK,是由 S上的矩形群的幂零扩张同余 (矩形群的幂零扩张的半格同余 ,矩形带的幂零扩张的半格同余 )组成 .ρT是半格同余 (带同余 )的 T-类ρT,是由 S上的群的幂零扩张的半格同余 ( * -cryptic的群的幂零扩张的并同余 )组成 .
On any eventually regular semigroup S,the K-classes (T-classes) of some special congruences on the congruence lattice of S are studied.The K-classes with ρK being group congruence (Clifford congrence,semilattice congruence) consists of nil-extension of rectangular group congruences (semilattice of nil-extension of rectangular group congruences,semilattice of nil-extension of rectangular band congruences) on S.The T-classes with ρT being semilattice congruence (*-band congruence) consists of semilattice of nil-extension of groups congruences (*-cryptic union of nil-extension of groups congruences) on S.
出处
《兰州大学学报(自然科学版)》
CAS
CSCD
北大核心
2003年第3期1-3,共3页
Journal of Lanzhou University(Natural Sciences)
基金
甘肃省自然科学基金资助项目 ( ZS0 0 1 -A2 5 -0 0 6-Z)
关键词
同余
幂零扩张
毕竟正则半群
congruence
nil-extension
eventually regular semigroup