期刊文献+

后台阶流动的数值模拟 被引量:10

Numerical simulation of backward facing step flow
下载PDF
导出
摘要 简述了大涡模拟的基本思想,指出大涡模拟的效率主要取决于四个因素,即流动中须有大尺度涡存在、合理的计算格式、合适的滤波器和亚格子应力模型。在深入考虑粘性不可压缩流Navier-Stokes方程各个子项作用的基础上,提出二阶全展开Euler-Taylor-Galerkin有限元方法作为大涡模拟的离散格式,并采用Gauss滤波器,对典型算例——后台阶处的流动进行大涡模拟,计算结果与相关文献符合的很好。从计算结果还可以看出大涡模拟与二阶全展开ETG有限元方法的结合在捕捉涡系及反映涡动时变过程方面具有明显的优势,说明大涡模拟适合于边界几何形状复杂区域流动的模拟。同时应用二阶全展开ETG有限元方法对低雷诺数粘性不可压缩后台阶流动进行了计算,得到与相关文献符合良好的计算结果,即该方法也可独立用于对低雷诺数粘性不可压缩流动的计算。 The basic thought of the large eddy simulation (LES) is presented. It is pointed out that the efficiency of LES depends mainly on the four factors - large scale eddies, reasonable calculating scheme, appropriate filter and subgrids stress mode. Based on considering the role of each term of Navier-Stokes equations for the incompressible viscous flow, the second order full expansion Euler-Taylor-Galerkin (ETG) finite element method is deduced and is used as the calculation scheme for LES. Cooperated with the Gauss filter, the large eddy simulation of the flow over a backward-facing step is carried out. The results agree well with that of the given reference. Since the rich eddies are captured and the vortex flow process is shown, LES is applicable to simulate the flow in the domains with complex geometry boundaries. The second order full ETG finite element method is also used to simulate the incompressible viscous flow of low Reynolds number. It is proved that the second order full expansion Euler-Taylor-Galerkin (ETG) finite element method can be used to simulate such a kind of flow independently.
出处 《计算力学学报》 EI CAS CSCD 北大核心 2003年第3期361-365,共5页 Chinese Journal of Computational Mechanics
关键词 后台阶流动 数值模拟 大涡模拟 Gauss滤波器 二阶全展开ETG有限元方法 低雷诺数不可压缩粘性流体力学 Calculations Computer simulation Galerkin methods Navier Stokes equations Reynolds number Vortex flow
  • 相关文献

参考文献8

  • 1樊洪明,何钟怡,王小华.弯曲管段内流动的大涡模拟[J].水动力学研究与进展(A辑),2001,16(1):78-83. 被引量:43
  • 2刘有军.平面突扩流动非稳定性的大涡模拟[J].计算力学学报,1998,15(2):186-191. 被引量:15
  • 3Smagorinsky J. General circulation experiments with the primitive equations I [J]. The Basic Experiment. Mon Weather Rev, 1963:91-99.
  • 4Deardoff J W. Three-dimensional numerical study of the height and mean structure of a heated planetary boundary layer, bound[J]. Layer Meteor, 1974:7-81.
  • 5Meneveau C, Katz J. Scale-invariance and turbulence models for large-eddy simulation[J]. Annu Rev Fluid Mech, 2000,32 : 1-32.
  • 6Donea J. A Euler-Taylor-Galerkin method for convectove transport problems [J]. Int J Number Methods Eng, 1984,20(1): 109-119.
  • 7Taylor C, Thomas C E, Margan K. Modeling flow over a backward-facing step using the FEM and the two-equation model of turbulence [J]. Int d Numer Meth Fluids, 1981(1) :295-304.
  • 8Thompdon M C, Ferziger J H. An adoptive multigrid technique for the incompressible Navier-Stokes equations[J]. J Comput Phys, 1989,82: 94-121.

二级参考文献7

  • 1S V PATANKAR 郭宽良(译).传热和流体流动的数值方法[M].合肥:安徽科学技术出版社,1994..
  • 2刘有军,博士学位论文,1997年
  • 3何子干,水动力学研究与进展.A,1994年,9卷,1期,11页
  • 4是勋刚,湍流,1994年,213页
  • 5帕坦卡 S V,传热与流动的数值计算,1980年,62页
  • 6郭宽良(译),传热和流体流动的数值方法,1994年
  • 7是勋刚,湍流,1994年

共引文献54

同被引文献113

引证文献10

二级引证文献35

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部