摘要
有各种迭代方法.松弛型迭代法、正则化迭代法、Ishikawa迭代法、预解式迭代法以及遍历型迭代法,最引人注目.这些迭代法的计算复杂性不尽相同,对不同单调程度的映象可分别使用.例如。
This paper proves that if A is a monotone mapping, then the sequence generatedby the slack iteration method converges if and only if there exists a φ∈?, suchthat〈Ax_n - Ay, x_n - y>≥φ(‖x_n- y‖)‖x_n - y‖where {x_n} is generated by and y is the limit of {x_n}. This shows that the slackiteration method is always convergent for any strongly monotone mappings or strictlymonotone mappings.
出处
《计算数学》
CSCD
北大核心
1989年第2期113-117,共5页
Mathematica Numerica Sinica