期刊文献+

基于OLS算法的RBF神经网络高速公路事件探测 被引量:4

Freeway Incident Detection Based on OLS and RBF Neural Networks
下载PDF
导出
摘要 高速公路事件是指破坏正常交通流并造成交通阻塞的非重现随机发生的事件。事件发生后对其进行快速可靠的探测对减少交通延误、保障道路安全、减少环境污染具有十分重要的意义。文中提出了一种基于模糊聚类技术和RBF神经网络的混合智能高速公路事件自动探测算法,同时改进了用于RBF神经网络训练的OLS(正交最小二乘)选择算法。仿真实验证明,改进的OLS选择算法大大提高了RBF神经网络的训练速度,同时具有无须事先确定RBF中心的优点,将之运用于公路事件探测可以获得满意的性能。 Freeway incidents are non-recurrent and pseudorandom events that disrupt the normal flow of traffic and create a bottleneck in the road network. Quick and reliable incidents detection is essential to reduce traffic delays, ensure road safety and protect environment. This paper presents a new hybrid intelligence algorithm for automatically detecting freeway incidents, which employs fuzzy clustering and RBF neural computing technique. An improved OLS(Orthogonal Least Squares) selection algorithm for training RBF neural networks is also proposed. The simulation results illustrate that the improved OLS selection algorithm accelerates the training of the RBF neural networks substantially and there is no need to decide the number of RBF centers in advance. The satisfactory performance could be achieved by using this algorithm in freeway incidents detection.
出处 《系统仿真学报》 CAS CSCD 2003年第5期709-712,共4页 Journal of System Simulation
基金 上海市自然科学基金项目"基于模糊神经网络的高速公路事件预测系统研究"(O12D14019)
关键词 高速公路事件探测 模糊聚类 RBF神经网络 正交最小二乘算法 freeway incidents detection fuzzy clustering RBF neural networks OLS algorithm
  • 相关文献

参考文献6

  • 1Ritchie S G, Ruey L C. Simulation of Freeway Incident Detection Using Artificial Neural Networks [J]. Transportation Research C,1993, 1(3): 203-217.
  • 2Adeli H. Karim A. Fuzzy-wavelet RBFNN model for freeway incident detection [J]. J.Transp.Engrg.,ASCE. 2000, (11/12): 464-471.
  • 3Li X, Mak M W. Determining the optimal number of clusters by an extended RPCL algorithm [J]. Journal of Advanced Computational Intelligence, 1999, 3(6).
  • 4Chen S, Cowan C F N, Grant P M. Orthogonal least squares learning algorithm for radial basis function networks [J]. IEEE Transactions on Neural Networks, 1991, 2(2): 302-309.
  • 5Bezdek J C. Pattern recognition with fuzzy objective function algorithms [C]. Plenum, New York, 1981.
  • 6Dia H, Rose G. Assessing the Performance of artificial neural network incident detection models [J]. Transportation Networks: Recent Methodological Advances,1996: 255-272.

同被引文献29

  • 1陈卓,刘晓平,施灿辉,郑善良,吴宜灿.基于MCNP的医学仿真计算建模方法研究[J].系统仿真学报,2004,16(10):2153-2156. 被引量:5
  • 2姜桂艳,温慧敏,杨兆升.高速公路交通事件自动检测系统与算法设计[J].交通运输工程学报,2001,1(1):77-81. 被引量:67
  • 3钱光耀,杨入超,赵光兴.基于人工神经网络的压力传感器三维数据融合[J].传感器与微系统,2007,26(2):79-81. 被引量:13
  • 4阎平凡,张长水.人工神经网络与模拟进化计算[M].清华大学出版社,2003.
  • 5Persaud B,Hall F L. Catastrophe theory and patterns in 30-second freeway data-implication for incident detection. Transportation Research, 1989, 23A (2):103-113.
  • 6Stephanedes Y J, Chassiskos A P. Application of filter-ing techniques for incident detection. Journal of Transportation Engineering, 199:3,119 (1) : 13-26.
  • 7Abdulhai B,Ritchie S G. Enhancing the universality and transferability of freeway incident detection using a Bayesian-based neural network. Transportation Research, 1999,7C(5) : 261-280.
  • 8Adeli H,Karim A. Fuzzy-wavelet RBFNN model for freeway incident detection. Journal of Transportation Engineering, 2000,126 (6) : 464-471.
  • 9Vapnik V, Golowich S, Smola A. Support vector method for function approximation, regression estimation, and signal processing. Advances in Neural Information Processing Systems, 1997. 281-287.
  • 10Lampariello F, Sciandrone M. Efficient Training of RBF Neural Networks for Pattern Recognition. IEEE Trans on Neural Networks, 2001, 12(5), 1235-1242

引证文献4

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部