期刊文献+

二维带非线性源项单个守恒律的有限体积方法的收敛性

CONVERGENCE OF FINITE VOLUME METHOD FOR SCALAR CONSERVATION LAW WITH NONLINEAR SOURCE IN TWO DIMENSION
下载PDF
导出
摘要 本文讨论在无结构网格下用有限体积方法离散二维带非线性源项的单个守恒律,在测度值解与Diperna唯一性结果的框架下,证明了估计解在L_(loc)~l(R^2×(0,T))意义下收敛到单个守恒律的熵解。 In this paper the scalar conservation law with nonlinear source is discretized by the finite volume scheme (FVM) on unstructured grid. With the aid of the measure valued en-tropy solution and DiPerna uniqueness result the approximate solution converges to entropy solution of the scalar conservation law in L_loc^1(R2 ×(0, T)).
作者 李大明
出处 《数学年刊(A辑)》 CSCD 北大核心 2003年第3期299-314,共16页 Chinese Annals of Mathematics
关键词 守恒律 有限体积格式 测度值解 Conservation law, Finite volume scheme, Measure valued solution
  • 相关文献

参考文献18

  • 1Bernardo Cockbern, Frederic Coquel & Philippe Lefloch, An error estimate for finite volume methods for multidimensional conservation laws [J], Math. of Comp., 63:207(1994),77-103.
  • 2Claire Chainais-Hillairet, Finite volume scheme for a nonlinear hyperbolic equation towards to the entropy solution and error estimate [J], Math. Model. and Numer.Anal., 33(1999), 129-156.
  • 3Claire Chainais-Hillairet, Finite volume scheme for a nonlinear hyperbolic equation,error estimate [J], Math. Meth. Appl. Sci., 23(2000), 467-490.
  • 4Frederic Coquel & Philippe Lefloch, Convergence of finite difference schemes conservation laws in several space dimensions, The corrected antidiffusive flux approach [J],Math. Comp., 57(1991), 169-210.
  • 5Frederic Coquel & Philippe Lefloch, Convergence of finite difference schemes conservation laws in several space dimensions, a general theory [J], SIAM J. Numer. Anal.,30(1993), 675-700.
  • 6DiPerna, R., The measure valued solution to conservation law [J], Arch. Rational Mech.Anal., 88(1985), 223-270.
  • 7Eymard, R., Gallouet, T., Ghilani, M. & Herbin, R., Error estimates for the approximate solution of a nonlinear hyperbolic equation given by finite volume scheme [J],IMA Jour. of Numer. Anal., 18(1998), 563-594.
  • 8Dietmar Kroner, Noelle, S. & Mirko Rokyta, Convergence of higher order upwind finite volume schemes on unstructured grids for scalar conservation laws in several space dimensions [J], Numer. Math., 71(1995), 527-560.
  • 9Kruzkov, S., First order quasilinear equations with several independent variables [J],Math. USSR Sb, 10(1970), 217-243.
  • 10Dietmar Kroner & Mirko Rokyta, Convergence of upwind finite volume schemes for scalar conservation laws in two dimension [J], SIAM. J. Numer. Anal., 31:2(1994),324-343.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部