期刊文献+

非线性不适定问题一种双循环的牛顿型迭代格式 被引量:3

ON A NEWTON-TYPE METHOD FOR THE REGULARIZATION OF NONLINEAR ILL-POSED PROBLEMS
下载PDF
导出
摘要 本文研究非线性算子方程F(x)=y的解,结合最速下降法,Newton-Landweber迭代格式及正则化思想,在F满足适当的条件下,构造出新的双循环迭代格式。本文对格式的收敛性进行了严格论证,并估计出迭代格式的收敛精度。 This paper considers a Newton-type method, for regularizing the abstract nonlinear ill-posed operator equation F(x) = y. Under certain smoothness conditions on the nonlinear operator, the authors obtain the local convergence of the method. By further assumptions on the closeness and smoothness of the exact solution, a stopping rule to terminate the iteration is proposed and the suitable rates of convergence is derived.
作者 张瑰 黄思训
出处 《数学年刊(A辑)》 CSCD 北大核心 2003年第3期321-330,共10页 Chinese Annals of Mathematics
基金 国家自然科学基金(NO.40075014)
关键词 非线性算子方程 非线性不适定问题 牛顿型迭代格式 迭代终止原则 收敛阶估计 Nonlinear operation equations, Nonlinear ill-posed problems, Newton-type method, Stopping rule, Convergence rate
  • 相关文献

参考文献14

  • 1金其年,侯宗义.解第一类算子方程的最大熵方法[J].中国科学(A辑),1997,27(3):231-239. 被引量:1
  • 2Engl, H. W., Regularization method for the stable solution of inverse problems [J],Survey Math. Indust, 3(1993), 143-171.
  • 3Jin Qinian & Hou Zongyi, On the choice of the regularization parameter for ordinary and iterated Tikhonov regularization of nonlinear ill-posed problems [J], Inverse Problems,13(1997), 815-825.
  • 4Kaltenbacher, B., Some Newton-type methods for the regularization of nonlinear ill-posed problems [J], Inverse Problems, 13(1997), 729-753.
  • 5Hanke, M., A regularized Levenberg -Marquardt scheme, with applications to inverse groundwater filtration Problems [J], Inverse Problems, 13(1997), 79-95.
  • 6Scherzer, O., A Convergence Analysis of a method of steepest descent and a two-step algorithm for nonlinear ill-posed problems [J], Numer. Funct. Anal. Optimiz, 17:(1-2)(1996), 197-214.
  • 7Hanke, M., Neubauer, A. & Scherzer, O., A convergence analysis of the Landweber iteration for nonlinear ill-posed problems [J], Numer.Math., 72(1995), 21-37.
  • 8Morozov, V. A., Regularization methods for non-linear ill-posed problems [M], Boca Raton FL: Chemical Rubber Company, 1993.
  • 9Engl, H. W., Kunisch, K. & Neubauer, A., Convergence rates for Tikhonov regularization of nonlinear ill-posed problems [J], Inverse Problems, 5(1989), 523-540.
  • 10Neubauer, A., Tikhonov regularization for non-linear ill-posed problems: optimal convergence rates and finite-dimensional approximation [J], Inverse Problems, 5(1989),541-557.

同被引文献10

  • 1J.Xu,B.Han,L.Li.Frozen Landweber Iteration for Nonlinear Ill-Posed Problems[J].Acta Mathematicae Applicatae Sinica,2007,23(2):329-336. 被引量:8
  • 2臧增亮,张铭,张瑰.三维三层背风波的理论和数值研究[J].大气科学,2007,31(3):547-552. 被引量:8
  • 3HANKE M. A Regularazaion Levenberg-Marquardt Scheme, with Applications to Inverse Groundwater Filtration Problems [J]. Inverse Problems, 1997, (13): 79-95.
  • 4OTMAR SCHERZER. A Convergence Analysis ofa method of steepest descent and a two-step algorithm for nonlinear iiiposed problems [J]. Numer. Funct. Anal. Optimiz, 1996, (17): 197-214.
  • 5MARTIN HANKE, ANDREAS NEUBAUER, OTMAR SCHERZER. A convergence analysis of the Landweber iteration for nonlinear ill-posed problems [J]. Numer. Math. 1995, (72): 21-37.
  • 6MOROZOV V A. Regularisation Methods for non-linear ill-posed problems [M]. Boca Raton FL: Chemical Rubber Company, 1993.
  • 7ENGL H W. Regularization method for the stable solution of inverse problems [C]. Survey Math. Indust. 1993, (3): 71-143.
  • 8BARBARA KALTENBACHER. Some Newton-type methods for the regularization of nonlinear ill-posed problems [J].Inverse Problems, 1997, (13): 729-753.
  • 9金福临,李训经.常微分方程[M].上海:上海科学技术出版社,1984.
  • 10东北师范大学数学系.常微分方程[M].北京:人民教育出版社,1983.

引证文献3

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部