期刊文献+

退化正则半群 被引量:2

Degenerate Regularized Semigroup
下载PDF
导出
摘要  引入了退化正则半群的定义,给出退化正则半群的一些基本性质,并证明了用多值线性算子刻划的指数有界退化正则半群的生成定理. In this paper we introduce the concept of degenerate regularized semigroups, and give some basic properties of degenerate regularized semigroups, as well as generation theorems of exponentially bounded degenerate regularized semigroups by using multivalued linear operators.
作者 张亮 方全蕾
出处 《应用泛函分析学报》 CSCD 2003年第2期178-182,共5页 Acta Analysis Functionalis Applicata
基金 国家自然科学基金(19971031)
关键词 退化正则半群 退化Cauchy问题 多值线性算子 生成定理 BANACH空间 算子半群 LAPLACE变换 degenerate regularized semigroup multivalued linear operator generation theorem
  • 相关文献

参考文献9

  • 1郑权.算子半群对非椭圆微分算子的应用[J].科学通报,2000,45(1):2-10. 被引量:1
  • 2Favini A, Yagi A. Multivalued linear operators and degenerate evolution equations[J]. Ann Mat Pura Appl, 1993, 163(4): 353--384.
  • 3Knuckles C, Neubrander F. Remarks on the Cauchy problem for multi-valued linear operators[J]. Math Res, 1994, 82: 174--187.
  • 4Yagi A. Generation theorem of semigroup for multivalued linear operators[J]. Osaka J Math, 1991, 28:385--410.
  • 5Thieme H R. "Integrated semigroups" and integrated solutions to abstract Cauchy problems[J]. J Math Annl Appl, 1990, 152(2): 416--447.
  • 6Mel' nikova I V, Filinkov A I. Abstract Cauchy Problems : Three Approaches[M]. Chapman & Hall,CRC, 1999.
  • 7Mel' nikova I V, Alshanskii M A. Well-posedness of a degenerate Cauchy problem im a Banach space[J]. Russian Acad Sci Dokl Math, 1994, 49(3): 449--459.
  • 8Mel'nikova I V, Anufrieva U A, Ushkov V Yu. Degenerate distribution semigroups and well-posedness of the Cauchy problem[J]. Integral Transform and Special Functions, 1998, 6: 247--256.
  • 9Arendt W. Vector-valued Laplace transforms and Cauchy problems[J]. Israel J Math, 1987, 59: 327--352.

二级参考文献4

同被引文献10

  • 1Mel'nikova I V,Filinkov A I.Abstract Cauchy problems:three approaches[M].Nwe York:Chapman & Hall,CRC,1999.
  • 2Mel'nikova I V,Alshanskii M A.Well-posedness of a degenerate Cauchy problem vonvergence in a Banach space[J].Russian Acad Sci.Dokl.Math.,1994,49(3):449-459.
  • 3Mel'nikova I V,Anufrieva V A,Ushkov V Yu.Degenerate distribution semigroups and well-sosedness of the Cauchy problem[J].Integral Transform and Special Functions,1998,6:247-256.
  • 4Arendt W.Approximation of degenerate semgroups[J].Taiwan Residents J.Math.,2001,5(2):279-295.
  • 5Hille E,Pillips R S.Functional Analysis and Smigroups[M].Rhode Island:Amer.Math.Soc.,1957.
  • 6Mel'nikova I.V.and Filinkov A.I.,Abstract Cauchy problems:three approaches.chaapman or Hall.CRC 1999.
  • 7Mel'nikova I.V.and Alshanskii M.A.,Well-posedness of a degenerate cauchy problem convergence in a Banach space,russian acad Sci.Dokl.Math.,1994,49(3):449~459.
  • 8Mel'nikova I.V.,anufrieva V.A.and Ushkov V.Yu,Degenerate distribution semigroups and well-posedness f Cauchy problem,Integral Transform and special Functions,1998,6,247~256.
  • 9W.Arendt,Approximation of degenerate semgroups.Taiwan Residents J.Math.,2001,5(2):279~295.
  • 10E.Hille and R.S.Pillips,Functional Analysis and Snigroups,Amer.Math.Soc.Providence R.I.1957.

引证文献2

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部