期刊文献+

符号空间有限型子转移混沌集的Hausdorff测度与Parry测度(英文) 被引量:1

Hausdorff Measure and Parry Measure of Chaotic Sets of Subshift of Finite Type in Symbolic Space
下载PDF
导出
摘要 设A是一个每列至少有二个元素为 1的不可约 0 ,1方阵 ,(∑A,σA)为由A所决定的符号空间有限型子转移 .在∑A 上定义一个与其拓扑相容的度量d使得 (∑A,d)的Hausdorff维数为 1.若C是H1 可测的σA 的Li Yorke混沌集 ,则H1(C) =0 ;若A是本原的 ,则存在一个σA 的有限型混沌集S使得H1(S)=1,其中H1为 1 Let A=(a ij) be an irreducible N×N matrix with a ij∈{0, 1} for all i, j. Let (∑ A, σ A) be a subshift of finite type determined by the matrix A. We define a metric d on ∑ A, then we have results as follow: Suppose every column of A has at least two 1. If C is a H 1-measurable Li-Yorke chaotic set for σ A, then H 1(C)=0 where H 1 denotes 1-dimension Hausdorff measure on (∑ A, d); If A is an irreducible and aperiodic matrix, then there is a finite chaotic set S for σ A such that H 1(S)=1.
作者 汪火云
出处 《数学研究》 CSCD 2003年第2期117-123,132,共8页 Journal of Mathematical Study
基金 SupportedbyNationalNaturalScienceFoundation (10 1710 34)
关键词 符号空间 有限型子转移 混沌集 HAUSDORFF测度 Parry测度 symbolic space subshift of finite type chaotic set hausdorff measure parry measure
  • 相关文献

参考文献7

  • 1Li T Y. Period 3 implies chaos. Amer Math Monthly. 1975, 82:985--992.
  • 2Xiong Jincheng, Yang Z G. Chaos caused by a topogical mixing maps. In dynamical systems and related tonics. Singapore, World Scientific Press, 1992, 550-- 572.
  • 3Walter P. Introduction to Ergodic theory, spring-verlag, New York Heidelberg Berlin, 1982.
  • 4Smital J. A chaotlc function with some extremal properties. Proc Amer Math Soc. 1983, 87:54--56.
  • 5Xiong Jincbeng. The Hausdorff dimension of chaotic sets of self shifts maps in symbolic space. Sdence in China (A), 1995, 25:1--11.
  • 6Xiong Jincbeng, Chen Ercai. Chaoa caused by strong-mixing measure-prescrving transformations. Science in China (A), 1996, 26:961--967.
  • 7Falconer K L. The geogmetry of fractal sets. Combredge Univexrsity Press, Combrige, 1985.

同被引文献2

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部