期刊文献+

图的围长与无圈边色数之间的关系(英文)

Relationship Between Girth and Acyclic Edge Chromatic Number of Graph
下载PDF
导出
摘要 对于一个图G的正常边着色 ,如果此种边着色使得该图没有 2 色的圈 ,那么这种边着色被称为是G的无圈边着色 .用α′(G)表示图G的无圈边色数 ,即G的无圈边着色中所使用的最小颜色数 .AlonN ,SadakovBandZaksA在 [1]中有如下结果 :对于围长至少是 2 0 0 0Δ(G)logΔ(G)的图G ,有α′(G) Δ+ 2 ,其中Δ是图G的最大度 .我们改进了这个结果 ,得到了如下结论 :对于围长至少是 70 0Δ(G)logΔ(G)的图G ,有α′(G) Δ+ A proper coloring of the edges of a graph G is called acyclic if there is no 2-colored cycle in G. The acyclic edge chromatic number of G, denoted by α′(G) is the least number of colors in an acyclic edge coloring of G. It is known that α′(G)Δ+2 for any graph whose girth is at least 2000Δ(G)logΔ(G) where Δ(G) is the maximum degree in G (see ). We improve the result and prove that α′(G)Δ+2 for any graph G whose girth is at least 700Δ(G)logΔ(G).
出处 《数学研究》 CSCD 2003年第2期136-139,共4页 Journal of Mathematical Study
关键词 概率 围长 无圈边色数 无圈边着色 acyclic edge coloring acyclic edge chromatic number girth probability
  • 相关文献

参考文献5

  • 1Alon N, Sadakov B, Zaks A. Acyclic Edge Colorings of Graphs. Journal of Graph Theory 2001, (37) :157-- 167.
  • 2Bondy J A, Murty U S R. Graph Theory with Applications. The Maclmillan Press Ltd, 1976.
  • 3Jensen T, Toft B. Graph Coloring Problems. John Wiley & Sons, Inc, New Yrok, 1995.
  • 4Molloy Michael, Reed Bruce. Graph Coloring and the Probabilistic Method. Springer, 2002.
  • 5Alon N, Specer J H. The Probabilistic Method. Wiley, New York, 1992.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部