期刊文献+

线性不确定系统经动态输出反馈的分层次控制策略 被引量:1

Layered control strategy of robust stabilization for uncertain systems via dynamic output feedback
下载PDF
导出
摘要 利用李雅谱诺夫稳定理论及线性矩阵不等式(LMI)方法,研究了具有非结构摄动的不确定连续系统经动态输出反馈的二次鲁棒能稳定问题。推导出这类控制器存在的充分条件,即一个拟线性矩阵不等式(Q-LMI)的形式,给出了Q-LMI问题的基于LMI方法的求解步骤。为了使得Q-LMI问题有解,可引入一些LMI约束,提高了Q-LMI问题的可解性。基于Q-LMI条件,揭示了系统不确定参数界与系统控制规模的关系,提出了“不同的摄动实施不同规模的控制”的鲁棒能稳定的分层次控制策略。最后,通过一个例子说明了结论的可行性。 Robust stabilization for uncertain linear systems is studied using Lyapunov stability theory and linear matrix inequality approach. Parameter uncertainties under consideration are time-varying and norm-bounded. A sufficient condition for the existence of such a controller is established in a Q-LMI form, and the solution procedure of the Q-LMI problem is proposed. The solvability for the Q-LMI problem can be improved by adding some LMI constraints to the Q-LMI. Based on the Q-LMI condition, a robust stable layered control strategy for the robust stabilization, namely, 'different controller is acted on the system with different parameter perturbation', is presented. An example is given to illustrate the feasibility of the strategy.
出处 《控制理论与应用》 EI CAS CSCD 北大核心 2003年第3期449-453,共5页 Control Theory & Applications
基金 国家创新研究群体科学基金(60024301) 国家自然科学基金(60175006)
关键词 线性不确定系统 动态输出反馈 分层次控制策略 线性矩阵不等式 鲁棒稳定控制 robust stable control dynamic output feedback LMI approach layered control strategy
  • 相关文献

参考文献8

  • 1贾新春,王素格.线性不确定系统的稳定控制鲁棒界和多级稳定鲁棒控制[J].系统科学与数学,2000,20(2):155-159. 被引量:8
  • 2PETERSEN I R. A stabilization algorithm for a class of uncertain linear systems [J]. Systems & Control Letters, 1989,8(4) :351 - 357.
  • 3XIE Lihua, FU Minyue, de SOUZA C E. H∞ control and quadratic stabilization of systems with parameter uncertain via output feedback[J]. IEEE Trans on Automatic Control, 1992,37(8): 1253- 1256.
  • 4KHARGONEKAR P P, PETERSEN I R, ZHOU Kemin. Robust stabilization of uncertain systems and H∞ optimal control [ J ]. IEEE Trans on Automatic Control, 1990,35(3) :351 - 361.
  • 5BOYD S, GHAOUI L E, BALAKRISHNAN V, et al. Linear Ma trix Inequalities in System and Control Theory [M] .Philadelphia, PA:SIAM, 1994.
  • 6YANG Guanghong, WANG Jianliang, CHAI S Y. Guaranteed cost control for discrete-time linear systems under controller gain perturbations Linear Algebra and Its Applications, 2000,312( 1/3): 161- 180.
  • 7GARCIA G, BERNUSSOU J, ARIZELIER D. Robust stabilization of discrete-time linear systems with norm-bounded time-varying uncertainty [ J]. Systems & Control Letters, 1994,22(4):327- 339.
  • 8YANG S K, CHEN C L. Observer based robust controller design for a linear system with time-varying perturbations [J]. J of Mathematical Analysis and Applications,1997,213(2) :642 - 661.

二级参考文献4

共引文献7

同被引文献8

  • 1CHOU C H, CHENG C C. Design of adaptive variable structure controllers for perturbed time-varying state delay systems[J]. Journal of the Franklin Institute, 2001, 338(1): 35 -46.
  • 2EUN T J, DO C O, JONG H K, et al. Robust controller design for uncertain systems with time delays: LMI approach[J]. Automatic, 1996, 32(8): 1229- 1231.
  • 3LEE Y S, MOON Y S, KWON W H, et al. Delay-dependent robust control for uncertain systems with a state-delay[J]. Automatica, 2004, 40(1): 65 - 72.
  • 4ZHENG F, WANG Q G, LEE T H. Adaptive robust control of uncertain time delay systems[J]. Automatica, 2005, 41(8): 1375 - 1383.
  • 5CHEN Y D, TUNG P C, FUH C C. Modified smith predictor scheme for periodic disturbance reduction in linear delay systems[J]. Journal of Process Control, 2007, 17(10): 799 - 804.
  • 6YAN J J, LIN J S, LIAO T L. Robust dynamic compensator for a class of time delay systems containing saturating control input [J]. Chaos, Solitons and Fractals, 2007, 31(5): 1223 - 1231
  • 7方一鸣,焦晓红,王益群.极点配置自校正控制及其在冷带轧机厚控系统中的应用[J].控制理论与应用,2000,17(2):240-243. 被引量:8
  • 8胡剑波,褚健.不匹配不确定线性时滞系统的鲁棒自适应控制(英文)[J].控制理论与应用,2001,18(3):380-384. 被引量:4

引证文献1

二级引证文献11

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部