期刊文献+

关于Banach空间中凸泛函的广义次梯度不等式 被引量:1

On the Subgradient Inequality of Convex Functionals in Banach Spaces
下载PDF
导出
摘要 本文在前人[1,2 ] 的基础之上 ,以凸泛函的次梯度不等式为工具 ,将Jensen不等式推广到Banach空间中的凸泛函 ,导出了Banach空间中的Bochner积分型的广义Jensen不等式 ,给出其在Banach空间概率论中某些应用 ,从而推广了文献 [3 6 In recent years the theory of convex functionals has been developing very fast.Many results of linear functionals are generalized in convex functionals,based on [1]and [2]in the light of thinking of generlization.In this paper,this paper gives on the subgradient inequality of convex functionals in the Banach spaces and its stochastie analysis applications of convex functionals and their applications,by means of subgraduent inequality of convex functionals thus generalizing the result of [3],[4],[5],[6].
出处 《应用数学》 CSCD 北大核心 2003年第3期136-140,共5页 Mathematica Applicata
关键词 BANACH空间 凸泛函 广义次梯度不等式 JENSEN不等式 Bochner积分型 概率论 GATEAUX可微 期望 Σ代数 下鞅 Convex functionals Subgradient inequality Banach space Gateaux defferenliable Bochner integrable Measure space Closed linear openator
  • 相关文献

参考文献5

  • 1李照海.凸函数与颜森不等式[J].华中师范大学学报(华中师院学报),1981,1:39-39.
  • 2中山大学《测度与概率论基础》编写组.测度与概率论基础[M].广州:广东科技出版社,1984..
  • 3Becher Leigh C.Burtion T A and Zhang Shunian. Functional differential equations and Jensen's inequality[J].J. Math. Anal. Appl. 1989,138:137-156.
  • 4Diestel J. Uhl J J. Vector Measures[M]. The American Mathematical Society,printed in USA, 1977.
  • 5Rockafellar R T. Convex Analysis[M]. Princeton, New Jersey: Princeton University Press. 1970.

同被引文献4

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部