一类障碍问题解梯度的局部和边界更高可积性(英文)
Local and Global Integrability of Derivatives of Solutions in Obsatcle Problems
摘要
本文考虑了主部为非线性的障碍问题 ,先证明了其弱解的梯度的更高可积性 ;然后 ,在边界满足P
We consider distributional solutions to obstacle problems associated with the nonlinear systems div A(x,u,u)=0.We prove local and global higher integrability of the devivatives of the solutions.
出处
《应用数学》
CSCD
北大核心
2003年第3期148-152,共5页
Mathematica Applicata
基金
SupportedinpartbytheNSFCundergrang 10 1710 5 9
参考文献9
-
1Giaquinta M.G Modica. Regularity results for some classes of higher order non-linear elliptic system[J].J. Reine Angew, Math., 1979,311-312. 145-169.
-
2Gilbarg D. Trudinger NS elliptic partial differential equations of second order[M]. Berlin: Spring-Verlag.2nd Edition. 1983.
-
3Granlund S. An Lp- estimate for the gradient of extremals[J]. Math. Scand. 1982.50:88-72.
-
4Henonen J. Kilelaeinen T. Martio O. Nonlinear potential theory of second order degenerate elliptic partial differtial equations[M]. Oxford University Press. 1993.
-
5Kinderlehrer D.Stampacchia G. An introduction to variational inequalities and their applications[M]. Academic Press. 1980.
-
6Li Gongbao. Martio O. Local and global integrability of gradients in obstacle problems[J]. Ann. Acad.Sci. Fenn. Ser. A I Math.,1994,19:25-34.
-
7Li Gongbao. Martio O. Stability of solutions of varying degenerate elliptic equations[J]. Indiana Math..1998.47:873-891.
-
8Li Gongbao. Martio O. Stability and higher integrability of derivatives of solutions in double obstacle problems[J]. preprint. 2002.
-
9Rodrigues J. Obstacle problem in mathematical physics[M]. North Holland. 1987.