摘要
将单边既约Hesse矩阵SQP方法和无导数线性搜索技术相结合,提出了一种求解等式约束最优化问题的拟牛顿算法.在适当的假设条件下,证明了算法全局收敛于优化问题的KKT点,而且收敛速度是局部超线性的.当迭代次数k充分大时,这种算法可以实现单位步长,因此不会出现Marotos效应.
By combiming a derivativefree line search with the projected heasian SQP methods,a quasiNewton method for solving equality constrained optimization problems was proposed.Under appropriate conditions,it is showed that the proposed method converges to a KKT point of the problem globally and superlinearly.Moreover,when the iterative number k sufficiently large,the unit step length would be favorite.As result,the Marotos effect may be avoided.
出处
《湖南大学学报(自然科学版)》
EI
CAS
CSCD
北大核心
2003年第3期8-10,共3页
Journal of Hunan University:Natural Sciences
基金
国家自然科学基金(10171030)
教育部优秀青年教师资助项目
关键词
等式约束
线性搜索
BROYDEN算法
全局收敛
超线性收敛
equality constrained optimization problem
line search
broyden's method
global convergence
superlinear convergence