期刊文献+

求解约束最优化问题KKT系统的BFGS方法

A BFGS Method for Solving KKT Systems of Constrained Optimization Problems
下载PDF
导出
摘要 利用Fischer-Burmeister函数,将约束最优化问题KKT系统转化为等价的非光滑方程组,利用广义导数,给出一个求解该非光滑方程组的BFGS方法.其子问题是一个系数阵为正定对称阵的线性方程组.为保证全局收敛性,我们引进了一个适当的线性搜索,它使得效益函数近似下降.在适当的条件下,我们证明了算法是适定的,并具有全局收敛性和超线性收敛性. In this paper,by using the FischerBurmeister function,we reformulate the KKT system of a contrained optimization problem into an equivalent nonsmooth equation.We then propose a BFGS method for solving this nonsmooth equation reformilation.The subproblems of the proposed method are systems of linear equations with symmetric and positive define coefficient matrices.To ensure the global convergence,we introduce a nonmonotne line search under which the generated iterates exhibit an approximate norm descent property.Under suitable conditions,we show that the proposed method is welldefined and globally and superlinearly convergent to a KKT point of the constrained optimization problem.
出处 《湖南大学学报(自然科学版)》 EI CAS CSCD 北大核心 2003年第3期11-14,共4页 Journal of Hunan University:Natural Sciences
基金 国家自然科学基金资助项目(10171030) 教育部优秀青年教师资助项目
关键词 KKT系统 BFGS方法 全局收敛 超线性收敛 广义导数 半光滑 KKT system BFGS method global convergence superlinear convergence generalized derivative semismooth
  • 相关文献

参考文献7

  • 1BYRD R, NOCEDAL J. A tool for the analysis of quai Newton methods with application to unconstrained minimization[J]. SIAM J Numer Anal,1989,26:727--739.
  • 2CLAKE F H. Optimization and Nonsmooth Analysis [M].New York:Wiley, 1983.
  • 3LID H, YAMASHITA N, FUKUSHIMA M. Nonsmooth equation based BFGS methed for solving KKT system in mathematical programming [J]. J Optim Theory Appl, 2001,109 : 123-- 167.
  • 4LID H, FUKUSHIMA N. A globally and superlinearly convergernent Guass-Newton-based BFGS method for symmetric nonlinear equations [J]. SIAM J Nume Anal,2000,37 : 152-- 172.
  • 5LID H,FUKUSHIMA M. A modified BFGS method and its globally convergence in nonconvex minimization [J]. J Comput Appl Math, 2001,129 : 15-- 35.
  • 6QI L, CHEN X. A globally convergent successive approximation method for severely nonsmooth equations[J]. SIAM J Control Optim, 1995,33,402 - 418.
  • 7QI L,SUN J. A nonsmooth version of Newton's method[J]. Math Programming, 1993,58: 353-- 367.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部