期刊文献+

轴向载荷激励下弹性盘轴转子系统的非线性动力稳定性分析 被引量:2

Nonlinear Dynamic Stability for Elastic Shaft-Disc Rotating System Under the Periodic Axial Load
下载PDF
导出
摘要 利用拉格朗日方程,在考虑轴和盘的质量和轴的几何非线性的情况下,建立了在周期轴向载荷参数激励下具滑动轴承支承弹性盘轴转子系统的非线性动力学方程.采用假设模态法对系统进行离散,基于Lyapunov运动稳定性理论和Floquet判据,利用谐波平衡法和数值方法,对系统线性和非线性动力稳定性进行了分析,得出了系统的非线性主动力不稳定区,讨论了多种因素对系统主动力不稳定区的影响,得出了一些有益的结论,并与有关文献进行了比较. By using the Lagrange equations, the nonlinear governing equations of motion for the rotating elastic shaftdisc system with sliding supported condition are obtained under the axial periodic forces. The effects of the mass of shaft and disc and the geometrical nonlinearity are included. An assumed modes method is developed to investigate the system, and based on the Lyapunov theory and Floquet criterion and using the HBM method and numerical methods, the linear and nonlinear dynamic stabilities for the system are investigated. The influences of different factors on the principle region of instability are discussed. Present results are compared with available data. 
出处 《湖南大学学报(自然科学版)》 EI CAS CSCD 北大核心 2003年第3期19-23,共5页 Journal of Hunan University:Natural Sciences
基金 湖南省科技厅基金资助项目
关键词 弹性盘轴转子系统 滑动轴承支承 非线性动力稳定性 假设模态法 rotating elastic shaft-disc system sliding supported condition nonlinear dynamic instability assumed modes method
  • 相关文献

参考文献10

  • 1MCLACLAN N W. Theory and application of Mathieu functions [M]. New York :Dover Publications Inc, 1964.
  • 2BOLOTIN V. The dynamic stability of elastic systems[M]. San Francisco: Holden--Day Inc, 1964.
  • 3FLOQUET G. Sur les equations differentielles lineaires[J]. Ann De L'ecole Normale Superieure, 1883, 12:47--88.
  • 4H L WETTERGREN, K O Olsson. Dynamic instability of a rotating asymmetric shaft with internal viscous damping supported in anisotropic bearings [J]. Journal of Sound and Vibration, 1996, 195(1): 75--84.
  • 5I Y SHEN, Y SONG. Stability and vibration of a rotating circular plate subjected to stationary in--plane edge loads [J]. Journal of Applied Mechanics, 1996, 63: 121--127.
  • 6P M GUILHEN, P BERTHIER. Instability and unbalance response of dissymmetric rotor-bearing systems [J]. Journal of Vibration, Acoustics, Stress, and Reliability in Design, 1988, 110: 289--294.
  • 7A UNGER, M A BRULL. Parametric instability of a rotating shaft due to pal sating torque[J]. Transaction of the ASME, 1981, 48: 948-- 958.
  • 8L W CHEN, D M KU. Dynamic stability analysis of a rotating shaft by the finite element method EJ3. Journal of Sound and Vibration, 1990, 143(1) :143-- 151.
  • 9L W CHEN, W K PENG. Dynamic stability of rotating composite shaft under periodic axial compressive loads [J].Journal of Sound and Vibration, 1998, 212(20) :215--230.
  • 10C W LEE, J S HAM. Mode identification for rotating rigid shaft with flexible disks by mode splits [J]. Journal of Sound and Vibration, 1999, 225(3): 425--446.

同被引文献23

引证文献2

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部