期刊文献+

基于相关法方位分析的水下主动目标尺度识别研究 被引量:11

On Underwater Target Dimension Recognition Based on Bearings Analysis of Signal Correlation Feature
下载PDF
导出
摘要 水下目标识别技术是现代声纳系统与水声对抗的一个极为重要的组成部分。它是随着声纳技术、信号检测理论、计算机技术等的进步而发展起来的 ,目前有多种识别方法。由于水下目标回波亮点结构是重要的目标特征 ,因此对目标回波亮点时空特征的提取已成为水下主动目标识别的一种有效方法。文中研究了水下高频 ( 2 0~ 35 k Hz)主动声学目标的识别方法及仿真性能。首先基于水下潜艇目标回波的亮点空间方位特征 ,提出了水下目标回波多亮点方位估计算法。然后 ,研究了目标亮点视在方位的模糊特性 ,给出了舷角与空间视在目标张角的关系。最后 ,进行了仿真实验 ,结果表明 :相关法方位分析的水下主动目标识别算法抗噪声能力强 ,在 S/N =0 d B时仍能很好地完成目标识别功能 ;在近正横附近 ,在距离 5 0 0 m处仍可完成目标尺度识别功能 ;在舷角 70°~ 2 0°扇面有良好的尺度识别能力 ;采用复杂波形 ,复本相关处理后可得到目标亮点时域信息和亮点方位信息。 Underwater target identification technology is a very important part of modern sonar system and underwater acoustic antagonizing. At present, there are only few target identification methods based on extracting active target echo features. This paper mainly makes a research on underwater high frequency(20~35kHz) active echo recognition method and its performance. The range of frequency is appropriate to detect small aperture acoustic transducer array and medium distance acoustic field. First, on the basis of the space bearings feature of underwater submarine target echo highlight, the bearings recognition algorithm of underwater target multiple highlight echo is presented (see Formula (6)). This method makes space identification in frequency domain, whereas traditional methods are in time domain. Then, the illegibility property of target highlight on the instantaneous bearings is researched and the relationship between broad side angle and space target extension angle (see Formula (13)) is presented. Finally, simulation experiment is carried out. Simulation results (see Tables 4 and 5) show that the algorithm has a strong anti noise ability which can correctly recognize target even at S/N =0 dB and at 70°~20° attacking angle. When adopting complicated waveform, we can get time domain information and bearings information of target highlight with processing of copy correlation. This method is easy and practical, and it is very stable
出处 《西北工业大学学报》 EI CAS CSCD 北大核心 2003年第3期317-320,共4页 Journal of Northwestern Polytechnical University
关键词 识别 方位分析 亮点 复本相关 target dimension recognition, bearings analysis, target highlight, copy correlation
  • 相关文献

参考文献6

  • 1郑兆宁 向大威.水声信号被动检测与参数估计理论[M].北京:科学出版社,1982..
  • 2侯自强.声纳信号处理[M].北京:海洋出版社,1986..
  • 3Qiao Xiaoyu. A Hybrid Neural Network Algorithm for Underwater Object Recognition. In: Proceedings of UDT--97,Germanny, 1997, 102~105.
  • 4Jiang Yongmin. A Study on Underwater Target Near Field Echo Characteristics. In:Proceedings of UDT--96, London, UK, 1996, 145~150.
  • 5Woon Hyun Cho. Target State Estimation via Eigendata Analysis of Signal Covariance Matrix. In : Proceedings of UDT--97, Germanny, 1997, 144~150.
  • 6Michael Scott Campbell. Real-Time Sonar Classification for Autonomous Underwater Vehicles. Master's dissertation,Naval Postgraduate School ,Monterey, 1996.

共引文献1

同被引文献63

引证文献11

二级引证文献43

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部