期刊文献+

解线性代数方程组的二次PE方法和二次PE_k方法 被引量:5

Quadratic PE and PE_k Methods of Solving a System of Linear Algebraic Equations
下载PDF
导出
摘要 建立了求解系数矩阵为大型分块三对角矩阵的线性代数方程组的二次 PE方法和二次 PEk方法。对系数矩阵为 Hermite正定矩阵的情形 ,通过研究迭代矩阵的拟三角分解与特征值表示 ,证明了二次 PE方法和二次 PEk In a paper presented at AIAA 3rd Computational Fluid Dynamics, Helliwell proposed the PE(Pseudo Elimination)method of solving a system of linear algebraic equations with tridiagonal matrix discretized from certain partial differential equations . Under the condition that the system of linear algebraic equations has Hermitian positive definite matrix or diagonal dominance matrix,Hu proved convergence results about linear PE method and linear PE k method . We propose improving convergence speed by replacing linear approximation with quadratic approximation. We propose quadratic PE and PE k methods for solving a system of linear algebraic equations with large scale blocked tridiagonal matrix. Through quasi tridecomposition and eigenvalue analysis of iterative matrix, we proved the solvability and convergence of the quadratic PE and quadratic PE k methods when the coefficient matrix is Hermitian positive definite matrix. Numerical experiments show preliminarily that the convergence speed of quadratic PE method is remarkably higher than that of linear PE method. Although in each iterative step,computing time of the quadratic PE method is a little higher than that of the linear PE method,the total computing time of quadratic PE method is only about one third of that of the linear PE method.
出处 《西北工业大学学报》 EI CAS CSCD 北大核心 2003年第3期340-343,共4页 Journal of Northwestern Polytechnical University
关键词 线性代数方程组 分块三对角矩阵 二次PE方法 二次PE 方法 linear algebraic equation, blocked tridiagonal matrix, quadratic PE(Pseudo Elimination)method,quadratic PE k method
  • 相关文献

参考文献5

  • 1胡家赣,刘兴平.EPE_k方法和可正定化矩阵[J].数值计算与计算机应用,1997,18(1):30-39. 被引量:7
  • 2胡家赣.线性代数方程组的迭代解法[M].科学出版社,1997..
  • 3胡家赣.解线性代数方程组的PE方法[J].计算数学,1982,4(2):151-157.
  • 4胡家赣,王邦荣.解线性代数方程组的PE_k方法[J].数值计算与计算机应用,1993,14(2):146-156. 被引量:11
  • 5Helliwell W S. A Fast Implicit Iterative Numerical Method for Solving Multidimensional Partial Differential Equations.In:Blottner F G. A Collection of Technical Papers AIAA 3rd Computational Fluid Dynamics. American Institute of Aeronautics and Astronautics, 1977,125 ~ 129.

二级参考文献6

共引文献24

同被引文献19

  • 1胡家赣,王邦荣.解线性代数方程组的PE_k方法[J].数值计算与计算机应用,1993,14(2):146-156. 被引量:11
  • 2蔡世东,蔡朝霞,张妮妮.MATLAB在动力方程求解中的应用[J].广西工学院学报,2006,17(1):74-76. 被引量:4
  • 3任水利,张凯院,叶正麟.解线性代数方程组的新型二次PE_k方法[J].高等学校计算数学学报,2006,28(2):176-184. 被引量:4
  • 4任水利,张凯院,叶正麟.块三对角线性代数方程组的一种迭代解法[J].昆明理工大学学报(理工版),2007,32(2):116-120. 被引量:4
  • 5胡家赣.线性代数方程组的迭代解法[M].北京:科学出版社,1997.29.
  • 6胡家赣.解线性代数方程组的PE方法[J].计算数学,1982,4(2):151-157.
  • 7Bloor M I G, Wilson M J. Generating parametrizations of wing geometries using partial differential equations. Computer Methods in Applied Mechanics and Engineering,1997,148:125-138
  • 8Evans D J.Direct methods of solution of partial differential equations with periodic boundary conditions. Math. Comput. Simulation,1979,ⅩⅩⅠ:270-275
  • 9William S.H, A fast implicit iterative numerical method for solving multidimensional partial differential equations, In: A Collection of Technical Paper AIAA 3rd Computational Fluid Dynamics, 1977, 125-129
  • 10William S H.A fast implicit iterative numerical method for solving multidimensional partial differential equations[ C ],In:A Collection of Technical Paper AIAA 3rd Computational Fluid Dynamics,1977,125-129.

引证文献5

二级引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部