期刊文献+

混沌系统可预测尺度研究 被引量:5

Study on the Predictable Size of Chaotic Systems
原文传递
导出
摘要 着重讨论了混沌系统未来状态预测的 "长期 "与 "短期 "问题 .混沌系统的初始状态敏感性决定了其不可长期预测性 .但在短期内对混沌系统的运动作出准确预测还是可能的 .基于此 ,给出了混沌时间序列的平均可预测尺度及最长可预测尺度 ,以此来界定短期预测的时间范围 .最后利用 Logistic映射以及 Henon映射产生的混沌时间序列对上述理论进行了实例验证 ,得到了较为理想的结果 . This paper focuses on the problem of long-term and short-term future states prediction of chaotic system. Sensitiveness of chaotic system to the original state determines that it is impossible to predict its future states in long term. However, it is realistic to make proper prediction on the movement of chaotic system in short term. Based on this, the average predictable size and the longest predictable size of chaotic time series are provided in this paper to definite the time range of short-term prediction. In the end, two kinds of chaotic time series generated by Logistic map and Henon map are utilized to verify the theory above.
出处 《系统工程理论与实践》 EI CSCD 北大核心 2003年第6期91-95,共5页 Systems Engineering-Theory & Practice
基金 国家自然科学基金 ( 79970 0 43 )
关键词 混沌系统 平均可预测尺度 最长可预测尺度 LOGISTIC映射 HENON映射 chaotic system the average predictable size the longest predictable size Logistic map Henon map
  • 相关文献

参考文献9

二级参考文献13

共引文献38

同被引文献44

  • 1王宏伟,马广富.基于模糊模型的混沌时间序列预测[J].物理学报,2004,53(10):3293-3297. 被引量:21
  • 2袁昌明,崔晓君.事故预测模型的建立与应用[J].中国计量学院学报,2004,15(4):314-316. 被引量:7
  • 3Takens F Mane. Detecting strange attractors in fluid turbulence[A]. Dynamical Systems and Turbulence[C].Berlin: Springer, 1981:21-80.
  • 4Hastings S P, Troy W C. A shooting approach to chaos in the Lorenz equations[J]. J of Differential Equations, 1996,127(1):41-53.
  • 5Cao Liangyue, Mees Alistair, Judd Kevin. Dynamics from multivariate time series[J]. Physica D, 1998,121(1-2):75-88.
  • 6Rosensrein M T, Collins J J, Luca C. Reconstruction expansion as a geometry-based framework for choosing proper delay time[J]. Physica D, 1994,73(1):82-89.
  • 7Fraser A M. Information and entropy in strange attractors[J]. IEEE Trans on IT, 1989,35(2):245-262.
  • 8Abarbanel H D I, Brown R, Sidorowich J J, et al. The analysis of observed data in physical systems[J]. Rev Mod Phy, 1993,65(4):1331-1392.
  • 9汪浩.社会经济系统结构、运行机制与功能的系统思考[J].系统工程,2000,18(4):3-4.
  • 10Cao Liangyue, Hong Yiguang, Fang Haiping, et al. Predicting chaotic time series with wavelet networks[J]. Physica D, 1995, 85(1-2): 225-238.

引证文献5

二级引证文献22

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部