期刊文献+

石英微天平中有限矩形谐振元振动耦合的有限元分析

Finite Element Analysis of the Coupled Vibrations of Finite Rectangle Resonators in QCM
下载PDF
导出
摘要 提出了一种处理石英微天平 ( quartzcrystalmicrobalance,QCM )振动耦合问题的新方法 .用ANSYS6.0有限元软件直接对机电耦合场进行三维有限元分析 ,从而避免了一般解析和半解析分析中对控制方程的简化 .通过对全电极晶片的振动分析 ,验证了计算的有效性 ,并找到了较好的单元尺寸比 .对于部分电极晶片 ,分析了电极尺寸和电极区的等效厚度对有限谐振元振动特性的影响 .根据本文的分析结果 ,提出了一些多通道石英微天平 (MQCM ) The coupled vibration of QCM is analyzed with a new method, which uses the 3D software of ANSYS 6.0 to analyze directly the coupled phenomenon of the structural and electric fields. This analysis avoids the over simplification of the control equation in the normal analytic or semi analytic analyses. Through the analysis of a fully electroded crystal plate, it is found that the present method is effective and an optimal scale is discovered. For partially electroded crystal plate, the influences of scale of electrode and equivalent thickness of electroded region on vibrations characteristics of finite resonator are analyzed. Finally some suggestions are given on the improvement of the design of MQCM.
出处 《中国科学技术大学学报》 CAS CSCD 北大核心 2003年第3期330-336,共7页 JUSTC
基金 中科院"百人计划"项目资助
关键词 MQCM 有限元 能陷 有限谐振元 等效厚度 multichannel quartz crystal microbalance (MQCM) finite element energy entrapping finite resonator equivalent thickness
  • 相关文献

参考文献12

  • 1刘建辉,莫志宏,刘明华,府伟灵.基因传感器研究新进展[J].国外医学(临床生物化学与检验学分册),2000,21(5):233-234. 被引量:5
  • 2Antonio Arnau, Yolanda, Jimennez. An extended Butterworth-Van Dyke model for quartz crystal microbalance applications in viscoelastic fluid media [ J ]. IEEE, 2001 , 48 (5):1367-1381.
  • 3Kiyoshi Nakamura, Ryoichi Yasuike et al.Trapped-energy piezoelectric resonators with elliptical ring electrodes [ A ]. Proc. 40 th Ann.Freq. control symp [ C ]. IEEE, 1990. 372-377.
  • 4Ishizaki Akio. Grooved AT-CUT quartz plate[ J ]. IEEE/EIA,2000:416-419.
  • 5Ishizaki Akio, Hitoshi Sekimoto, Daiuke Tajima, et al. Analysis of spurious vibration in mesa-shaped AT-CUT quartz plates [ A ]. 1995 IEEE Ultrasonics Symposium[C], 1995. 913-916.
  • 6Toshihiro Ishikawa. Vibration analysis of thickness shear mode trapped-energy resonators[ J ].Jpn. J. Appl. Phys, 2001 ,40 :3643-3645.
  • 7Wang Ji, Yong Y-K, Tsutomu Imai. Finite element analysis of the piezoelectric vibration of Quartzplate resonators with higher-order plate theory [ J ]. International Journal of Solids and Structures, 1999, 36:2303-2319.
  • 8Jan Soderkvist. Using FEA to treat piezoelectric low-frequency resonators [ J ]. IEEE Transactions on Ultrasonics and Frequency Control ,1998,45 (3) :815-823.
  • 9Gehin C, Samper S and Teisseyre Y. Mountng characterization of piezoelectric resonator using FEM [ A ]. Proccedings of 1997 International IEEE Frequency Control Symposium [ C ] ,1997. 630-633.
  • 10Tiersten H F. Linear Piezoelectric Plate Vibrations[ M]. New York: Plenum Press. 1969.

二级参考文献10

  • 1Mo ZH,Liu JH,Xue Q,et al. Chemical Journal of Chinese Universities . 1999
  • 2Sun X,Xu C,Liu S,et al. Chemical Journal of Chinese Universities . 1998
  • 3Henke L,Piunno AE,Mclure AC,et al. Analytica Chimica Acta . 1997
  • 4Abel AP,Weller MG,Duveneck GL,Anal et al. Chemtracts . 1996
  • 5Isola NR,Stokes DL,Vo-Dinh T. Analytical Chemistry . 1998
  • 6Peterlinz KA,Georgiadis RM,Herne TM,et al. Journal of the American Chemical Society . 1997
  • 7Jordan CE,Anthony GF,Andrew JH,et al. Analytical Chemistry . 1997
  • 8Hashimoto K,Ito K,Ishimoori Y. Sensors and Actuators . 1998
  • 9Singhal S,Kuhr WG. Analytical Chemistry . 1997
  • 10Arlinghaus H F,Kwoka M. Analytical Chemistry . 1997

共引文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部