期刊文献+

细圆管内纳米颗粒悬浮液流动特性的实验研究 被引量:4

Experimental investigation on flow of nanoparticle suspension in mini tubes
下载PDF
导出
摘要 实验研究了细圆管内氧化铜纳米颗粒悬浮液的流动特性. 试验段的管径为0.68 mm、1.01 mm和1.28 mm,氧化铜纳米颗粒的平均粒径为50 nm,悬浮液中氧化铜纳米颗粒的质量分数分别为0.02, 0.04和0.06,分散剂十二烷基苯磺酸钠(SDBS)质量的分数为0.02. 实验结果显示,氧化铜纳米颗粒悬浮液的流动压降比去离子水的大,且正比于其质量分数;层流向湍流转化的临界雷诺数小于常规尺度的数值,且正比于管径. Experiments were conducted to investigate the characteristics of water with copper oxide nanoparticle suspensions flowing through circular stainless steel tubes. The internal diameters of the tube are 0.68 mm, 1.01 mm and 1.28 mm. The mean diameter of the nanoparticle is 50 nm. The mass fractions of copper oxide nanoparticles in the experiment are 0.02, 0.04 and 0.06. The mass fraction of surfactant SDBS is 0.02. The result of the flow experiment shows that the pressure drop of copper oxide nanoparticle suspension is higher than that of the water. Pressure drop will increase if the mass fraction of the suspension increases. The critical Reynolds number of transition from laminar to turbulent flow, which appears earlier than in normal size tube case, would increase with the increasing of diameter.
出处 《上海理工大学学报》 CAS 北大核心 2003年第2期121-124,共4页 Journal of University of Shanghai For Science and Technology
基金 国家自然科学基金资助项目(50276030 5999550-3)
关键词 纳米颗粒悬浮液 细圆管 流动特性 nanoparticle suspension mini tubes flow characteristic
  • 相关文献

参考文献5

  • 1Eastman J A, Choi U S, Li S, et al. Enhanced thermal conductivity through the development of nanofluids[A]. Materials Research Society Symposium Proceedings V[C], 1996.
  • 2Eastman J A, Choi U S, Li S, et al. Novel thermal properties of nanostructured materials[A]. Materials Science Forum[C]. Switzerland: Trans Tech Publications, 1999.
  • 3Lee S, Choi S U, Li S, ct ai. Measuring thermal conductivity of fluids containing oxide nanoparticles[J]. ASME Journal of Heat Transfer, 1999, 121(2):280-289.
  • 4Lee Shinpyo, Choi Stephen U S. Application of metallic nanoparticle suspensions in advanced cooling systems[A]. ASME, Pressure Vessels and Piping Division (Publication) PVP v 342 1996, 227-234.
  • 5Li Jun-Ming, Li Ze-liang, Wang Bu-Xuan. Experimental viscosity measurements for copper oxide nanoparticle suspensions[J]. Tsinghua Science and Technology, 2002, 7(2): 198~201.

同被引文献25

  • 1宋晓岚,吴雪兰,曲鹏,王海波,邱冠周.纳米SiO_2分散稳定性能影响因素及作用机理研究[J].硅酸盐通报,2005,24(1):3-7. 被引量:64
  • 2Choi S U S. Enhancing thermal conductivity of fluids with nanoparticles [C]//Developments and applications of non-Newtonian flows. New York: ASME Press, 1995, 66: 99-103.
  • 3Lee S, Choi S U S. Application of metallic nanoparticle suspensions in advanced cooling systems [C]//Recent Advances in Solids/Structures and Application of Metallic Materials. American Society of Mechanical Engineers, Pressure Vessels and Piping Division (Publication) PVP, 1996: 227-234.
  • 4Idelchic I E. Handbook of Hydraulic Resistance [M]. Washington: Hemisphere Publ Corp, 1986.
  • 5Rohsenow Warren M, Hartnett J P. Handbook of heat transfer[M]. New York: McGraw-Hill Book, 1975.
  • 6Webb R L. Performance evalution criteria for use of enhanced heat exchanger surfaces in heat exchanger design[J]. Int J Heat Mass Transfer, 1981, 24(4): 715-726.
  • 7CHOI S U S.Enhancing thermal conductivity of fluids with nanoparticles[C]//ASME FED 231.New York:ASME,1995:99-103.
  • 8XUAN Yiming,LI Qiang.Investigation on convective heat transfer and flow features of nanofluids[J].J Heat Trans,2003,125(1):151-155.
  • 9HERIS S Z,ESFAHANY M N,ETEMAD S G.Experimental investigation of convective heat transfer of Al2O3/water nanofluid in circular tube[J].Int J Heat Fluid Flow,2007,28 (2):203-210.
  • 10DREW D A,PASSMAN S L.Theory of multi component fluids[M].Berlin:Springer,1999.

引证文献4

二级引证文献10

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部