期刊文献+

间歇式潜流人工湿地中COD、NH_4-N动态变化特征 被引量:27

COD_(Cr) AND NH_4-N DYNAMIC VARIATION CHARACTERISTICS IN BATCH SUBSURFACE FLOW CONSTRUCTED WETLAND
下载PDF
导出
摘要 采用酸化、两段间歇流人工湿地处理生活污水。废水经酸化预处理后 ,COD平均去除率 30 % ,NH4 N平均去除率 13 6 3%。第 1段人工湿地为潜流 ,周期 12h ,进水 6h ,排水 6h ,水力停留时间 (HRT) 3d ,COD去除率 6 0 %~ 80 % ,最高达 88 5 6 % ;NH4 N去除率 5 0 %~ 70 %。第 2段人工湿地为下行流 ,周期 2 4h,进水 12h ,排水 12h ,HRT 1d ,COD平均去除率 5 3 2 % ;NH4 N平均去除率大于 99%。对第 1段湿地中COD、NH4 N空间变化的研究表明 ,间歇运行所产生的大气复氧对COD、NH4 N的去除具有明显的强化作用。COD的去除基本不受温度影响 ,而NH4 The system was consisted of acidification reactor and two stage batch flow constructed wetlands treating municipal wastewater.Raw sewage was treated in a pre acidification reactor with a hydraulic retention time (HRT) of 3 hours and the average removal rates of COD Cr and (NH 4 N) were about 30% and 13.63%,respectively.The first stage constructed wetland was subsurface flow.One cycle was 12 h,including 6 h feed and 6 h drain.After 3 days of HRT,COD Cr removal varied from 60% to 80%,the maximum was 88.56%;NH 4 N removal varied from 50% to 70%.The second stage constructed wetland was down flow.One cycle was 24 h,including 12 h feed and 12 h drain.After 1 day of HRT,COD Cr average removal was 53.2%;NH 4 N average removal exceeded 99%.The spatial variation of COD Cr and NH 4 N in the first stage construced wetland demonstrated that atmosphere reaeration during draining of the wetland could strengthen the removal of COD Cr and NH 4 N.The temperature had little effect on COD Cr degradation while obviously affected the removal of NH 4 N.
出处 《环境工程》 CAS CSCD 北大核心 2003年第3期62-64,共3页 Environmental Engineering
关键词 间歇式潜流人工湿地 COD NH4-N 化学需氧量 氨氮 废水处理 动态变化特征 去除率 batch flow,constructed wetland,NH 4 N and wastewater treatment
  • 相关文献

参考文献10

  • 1张甲耀,夏盛林,熊凯,金显春.潜流型人工湿地污水处理系统的研究[J].环境科学,1998,19(4):36-39. 被引量:36
  • 2付贵萍,吴振斌,任明迅,贺锋,Alex Pressl,Reinhard Perfler.垂直流人工湿地系统中水流规律的研究[J].环境科学学报,2001,21(6):720-725. 被引量:47
  • 3Brix, H. Wastewater treatment in constructed wetlands: ststem design,removal mechanisms and rates. In : Constructed Wetalands for Water Quality Improvement, Meshiri, G. A. ( ed. ), CRC Press Inc., Boca Raton. 1993 :391 - 398.
  • 4Brix, H., Schierup, H.H. Soil oxygenation in constructed reeds beds:The role of macrophyte and soil-atmosphere interface oxygen transport. In Constructed Wetlands in Water Pollution Control. P. F. Cooper and B.C.Findlater( Eds ), Pergamon Press, Oxford, England, 1990: 53 - 66.
  • 5Bergoon, P. S. Wastewater treatment in vegetated submerged beds using artificial substrates. M. S. thesis, Dep. Environ. Eng. Sci., Univ. Florida,Gainesvine. 1989.
  • 6Howes, B. L., and Good, R. E. Factors Controlling gas exchange in salt water wetlands: Plant versus sediment exchanges arts the role of hydrology.Paper presented at The Wetlands Biogeochemistry Symp., Louisiana State Unvi. ,Baton Rouge. 1991.
  • 7J. T. de Sonsa, A. C. van Haandel, A. A. V. Gulmarwes Post treatment of anaerobic effluents in constructed wetland systems. Wat. Sci. Tech. ,2001.44(4) :213 - 219.
  • 8Katrin von Felde and Sabine Kunst. N and COD removal in vertical flow systems. Wat. Sci. Tech, 1997.35 ( 5 ) : 79 - 85.
  • 9P. S. Burgon, K. R. Reddy, T. A. Debusk. Performance of subsurface flow wetlands with batch load and continuous-flow condition. Wat. Environ.Res. 1995.67(5) :855 - 862.
  • 10Reed,S. C.subsurface flow constructed wetlands for wastewater treatment:a technology assessment. EPA 832-R-93-001.1993.

二级参考文献14

共引文献79

同被引文献305

引证文献27

二级引证文献221

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部