期刊文献+

H_2在金属钾修饰碳纳米管上的吸附与储存

Hydrogen Storage in Potassium-modified Multiwalled Carbon Nanotubes
下载PDF
导出
摘要 利用高压容积法、辅以卸压升温脱附排水法,测定金属钾修饰多壁碳纳米管(K^0-MWCNTs)对H_2的吸附储存容量。结果表明,在室温(~25℃)、~7.25MPa实验条件下其对氢的吸附储存容量可达3.80%(质量百分数);室温下卸至常压的脱附氢量为3.36%(占总吸附氢量的~89%),后续升温(升至673K)的脱附氢量为0.41%(占总吸附氢量的~11%)。 Storage capacity of H2 in a kind of potassium-modified multiwalled carbon nanotubes, K0-MWCNTs, was measured by using high-pressure volumetric method and desorption water-displacement method. It was experimentally shown that appropriate incorporation of a certain amount of metallic potassium into the MWCNTs could significantly increase the storage capacity of hydrogen. Under conditions of 7. 25 MPa pressure and ambient temperature, H2 uptake of 3. 8% can be achieved by K0-MWCNTs, which was as 2. 5 times high as that by the K?undoped MWCNTs under the same conditions. The investigation in combination of the high-pressure volumetric method with the desorption water-displacement method indicated that adsorption of -99% of the H2 was reversible, and that -89% of the stored hydrogen (equalling storage capacities of 3. 36%) could be desorbed while the pressure was relieved to atmospheric pressure and the remaining adsorbed hydrogen (equalling storage capacities of 0. 41%) was desorbed in the following process of elevating temperature from room temperature to 673 K.
出处 《厦门大学学报(自然科学版)》 CAS CSCD 北大核心 2003年第4期405-409,共5页 Journal of Xiamen University:Natural Science
基金 国家自然科学基金(50072021) 福建省自然科学基金(2001H017)
关键词 氢能 吸附储氢 金属钾修饰碳纳米管 氢气 吸附储存容量 脱附氢量 K°-MWCNTs MWCNTs K0-MWCNTs hydrogen-storage CNTs-based H2-storage materials
  • 相关文献

参考文献16

  • 1周振华,武小满,王毅,林国栋,张鸿斌.氢气在碳纳米管基材料上的吸附-脱附特性[J].物理化学学报,2002,18(8):692-698. 被引量:27
  • 2Dillon A C, Jones K M, Bekkedahl T A, et al. Storage of hydrogen in single-walled carbon nanotubes [J].Nature, 1997, 386: 377.
  • 3Chambers A, Park C, Baker R T K, et al. Hydrogen storage in graphite nanofibers [J]. J. Phys. Chem. B,1998, 102: 4 253.
  • 4Fan Y Y, Liao B, Liu M, et al. Hydrogen uptake in vapor-grown carbon nanofibers [J]. Carbon, 1999,37: 1 649.
  • 5Wu X B, Chen P, Lin J, et al. Hydrogen uptake by carbon nanotubes [Jl. Int. J. Hydrogen Energy,2000, 25: 262.
  • 6Tibbetts G G, Meisner G P, Olk C H. Hydrogen storage capacity of carbon nanotubes, filaments, and vapor-grown fibers [J]. Carbon, 2001, 39, 2 291.
  • 7Dillon A C, Heben M J. Hydrogen storage using earbon adsorbents: past, present, and future [J]. Appl.Phys. A, 2001, 72: 133.
  • 8Ahn C C, Ye Y, Ratnakumar B V, et al. Hydrogen adsorption and measurements on graphite nanofibers[J]. Appl. Phys. Lett. ,1998, 73:3 378.
  • 9Wang Q, Johnson J K. Molecular simulation of hydrogen adsorption in single-walled carbon nanotubes and idealized carbon slit pores [J]. J. Chem. Phys. ,1999,110: 577.
  • 10Strobel R, Jorissen L, Schlier T, et al. Hydrogen adsorption on earbon materials [J]. J. Power Sei.,1999, 84: 221.

二级参考文献3

共引文献26

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部