期刊文献+

Poisson方程谱元法的一个有限元预条件分析 被引量:2

Analysis for a Finite Element Preconditioned Spectral Element Method of the Poisson Equation
下载PDF
导出
摘要 考虑一维Poisson方程的谱元法离散系统的预条件求解问题。分析基于整体Gauss-Lobatto-Legendre节点上的线性有限元刚性矩阵S_h作为谱元离散系统A_hU=F_h预条件的代数性质。证明了区域分解情形下(S_hU,U)_(l_2)与(A_jU,U)_(l_2)的等价性,即存在与h无关的两个正常数c_0,c_1,使得S_h^(-1)A_h的任一特征值λ_k满足c_0≤λ_k≤c_1。 In this paper, we analyze the spectrum of a preconditioned spectral element approximation to the Poisson problem. The analysis is carried out based on the algebraic properties of the stiffness matrix (Sh) of the linear finite element method associated to the global Gauss-Lobatto-Legendre nodes,which is used as the preconditioner of the spectral element system AhU = Fh. We show the equivalence between (ShU,U)l2 and (AhU,U)l2 in the case of domain decomposition. Precisely, we prove that there exist two positive constants c0, C1, such that λk∈[c0,c1]for all eigenvalues λk of Sh-1Ah.
机构地区 厦门大学数学系
出处 《厦门大学学报(自然科学版)》 CAS CSCD 北大核心 2003年第4期421-424,共4页 Journal of Xiamen University:Natural Science
基金 国家自然科学基金(10171084)
关键词 POISSON方程 谱元法 谱元离散系统 有限元预条件分析 线性有限元刚性矩阵 spectral element methods finite element preconditioning eigenvalues
  • 相关文献

参考文献4

  • 1Maday Y, Patera A T. Spectral Element Methods for the Incompressible Navier -- Stokes Equations [ M ].State-of-the-art surveys in computational mechanics,New York. ASME, 1988.71-- 143.
  • 2Quarteroni A , Zampieri E. Finite dement preconditioning for legendre spectral collocation approximations to elliptic equations and systems[J]. SIAM J. Numer.Anal. , 1992, 29; 917-- 936.
  • 3Canuto C, Hussaini M Y, Quarteroni A, et al. Spectral Methods in Fluid Dynamics [M]. New York;Springer Verlag, 1988.
  • 4Parter S V, Rothman E E. Preconditioning legendre spectral collocation approximations to elliptic problems[J]. SIAM J. Numer. Anal. , 1995, 32.333--385.

同被引文献17

引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部