期刊文献+

完全非负矩阵上的Oppenheim不等式的推广 被引量:2

The Generalization of Oppenheim's Inequalities for Totally Nonnegative Matrices
下载PDF
导出
摘要 完全非负矩阵在Hadamard乘积意义下是不封闭的。对于两个三对角完全非负矩阵A=(a_(ij)),B=(b_(ij)),Markham证明了它们的Hadamard乘积的行列式满足Oppenheim不等式。我们应用完全非负矩阵的Hadamard中心的性质,改进了Markham的相应结果,给出了新的下界(A_1为删去第一行的A的主子矩阵):det(AB)≥(multiply from i=1 to n b_(ii))detA+(multiply from i=1 to n a_(ii))detB-detAdetB+(detA)((multiply from i=2 to n a_(ii)/detA_1)-1)(b_(11)detB_1-detB)+(detB)((multiply from i=2 to n b_(ii)/detB_1)-1)(a_(11)detA_1-detA)。 Totally nonnegative matrices are not closed in the sense of Hadamard product. For two tridiag-onal totally nonnegative matrices A = (aij ) ,B =(bij), Markham proved that the determinant of their Hadamard product satisfies Oppenheim's inequality. Applying the properties of Hadamard core for totally non-negative matrices, we obtain the new lower bounds of the determinant about Hadamard product for two tridiagonal totally nonnegative matricies,and improve the corresponding results derived by Markham. Our conclusion is as follows: where A1 is principal submatrix of a obtained by deleting its first row and column.
作者 杨忠鹏
机构地区 莆田学院数学系
出处 《厦门大学学报(自然科学版)》 CAS CSCD 北大核心 2003年第4期431-434,共4页 Journal of Xiamen University:Natural Science
基金 福建省教育厅科研基金(JB01206)
关键词 完全非负矩阵 OPPENHEIM不等式 HADAMARD乘积 行列式 三对角矩阵 Hadarnard中心 totally nonnegative matrices Hadamard product Hadamard core Oppenheim's inequality tridiagonal matrix
  • 相关文献

参考文献10

  • 1杨忠鹏,刘继春.M矩阵Fan乘积的Oppenheim不等式[J].应用科学学报,1999,17(3):334-336. 被引量:6
  • 2Horn R A, Johnson C R. Matrix Analysis[M]. New York: Cambridge University Press , 1985.
  • 3Yang Zhongpeng , Liu Jianzhou. Some results on Oppenheim's inequalities for M-matrices [J]. SIAM J MAtrix anal. AppI. , 2000, 21(3) :904--912.
  • 4Lynn M S. On the Schur product of the H-matrices and non-negative matrices, and related inequalities[J].Pro Cambridge Philos .Soc. , 1964, 60 : 425--431.
  • 5Ando T. Inequalities for M-matrices[J]. Linear and Multilinear Algebra, 1986, 8 : 291 -- 316.
  • 6Crans A S. Fallat S M, Johnson C R. The Hadamard core of the totally nonnegative matrices[J]. Lin Alg.Appl., 2001, 328:203--222.
  • 7Markham T L. A semigroup of totally nonnegative matrices[J]. Lin Alg. Appl., 1970, 3(2): 157--164.
  • 8Berman A. Plémmons R.J. Nonnegative Matrices in the Mathematical Sciences[M]. New York :Academic Press. ,1979.
  • 9Fallat S M, Johnson C R. Sub-direct sums and positivity classes of matrices[J]. Lin Alg. Appl. , 1999, 288 :149--173.
  • 10Fallat S M, Johnson C R, Smith R L. The general to tally positive matrix completion problem with few unspecified entries[J]. The Electronic Journal of Linear Algebra, 2000, 7 : 1 -- 20.

二级参考文献3

共引文献5

同被引文献14

  • 1杨忠鹏,冯晓霞.矩阵乘积行列式下界的改进[J].苏州科技学院学报(自然科学版),2004,21(2):23-27. 被引量:3
  • 2黄廷祝.M矩阵的Oppenheim型不等式[J].应用科学学报,1996,14(3):369-371. 被引量:7
  • 3Markham T L. A semigroup of totally nonnegative matrices. Linear Algebra Appl, 1970, 3(2):157-164.
  • 4Styan G P H. Hadamard products and multivariate statistical analysis. Linear Algebra Appl, 1973, (6):217-240.
  • 5Crans A S, Fallat S M, Johnson C R. The Hadamard core of the totally nonnegative matrices. Linear Algebra Appl, 2001, 328:203-222.
  • 6Markham T L, Smith R L. A Schur complement inequality for certain P-matrices. Linear Algebra Appl, 1998, 281:33-41
  • 7Fallat S M, Johnson C R, Smith R L. The general to tally positive matrix completion problem with few unspecified entries. The Electronic Journal of Linear Algebra, 2000, 7:1-20.
  • 8Ando T. Totally positive matrices. Linear Algebra Appl, 1987, 90:165-219.
  • 9Yang Zhongpeng, Liu Jianzhou. Some results on Oppenheim′s inequalities for M-matrices. SIAM J. Matrix Anal. Appl, 2000, 21(3):904-912.
  • 10杨忠鹏,刘继春.M矩阵Fan乘积的Oppenheim不等式[J].应用科学学报,1999,17(3):334-336. 被引量:6

引证文献2

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部