期刊文献+

压电介质反平面问题中导电与电介质刚性线的相互作用 被引量:4

Interaction of the Rigid Dielectric and Conductor Line Inclusions in a Piezoelectric Medium
下载PDF
导出
摘要 将压电介质中的一对电介质和导体刚性线夹杂问题归结为数学中的Riemann Hilbert问题。利用Muskhelishvili的方法 ,得到问题的精确解。对于由电介质和导体组成的单一刚性线夹杂问题进行了分析 ,发现了联结点处的奇异性 。 Two rigid line inclusions of which one is a dielectric and the other is a conductor in piezoelectric material is attributed to Riemann Hilbert problem. By using the method of Muskhelishvili, explicit expressions of the singularity coefficients of field variables are obtained. In the case of one rigid line inclusion being composed of two parts with dielectric and conductor respectively, the singularity at tips and joint is also discussed. The values of J integral are given. It is found that there exists singularity at the joint.
作者 施伟辰
出处 《上海海运学院学报》 北大核心 2003年第2期137-141,共5页 Journal of Shanghai Maritime University
基金 上海市曙光计划项目资助 (SG2 0 0 0 -3 1)
关键词 压电介质 反平面问题 导体 电介质 刚性线 J-积分值 夹杂问题 相互作用 压电材料 能量-动量张量 piezoelectric material inclusion rigid line energy momentum tensor J integral
  • 相关文献

参考文献16

  • 1施伟辰 匡震邦.非均匀电磁弹性材料的守恒律[A]..中国力学学会固体力学专业委员会"非均匀材料的变形与破坏学术研讨会"宣读[C].,2001..
  • 2斯米尔诺夫B.N.高等数学教程,第三卷,第二分册[M].北京:人民教育出版社,1958..
  • 3施伟辰 匡震邦.非均匀电磁弹性材料的守恒律[J].固体力学学报,2001,23:1-8.
  • 4朗道 Л.Д. 栗弗席兹 Е.М.连续媒质电动力学[M].北京:人民教育出版社,1959..
  • 5Deeg W F. The Analysis of Dislocation, Crack and Inclusion Problems in Piezoelectric Solids[M]. Ph.D. thesis, Stanford, C.A., Stanford University, 1980.
  • 6Chung M Y, Ting T C T. Piezoelectric solid with an elliptical inclusion or hole[J]. Int. J. Solids Structures, 1996, 33:3343-3361.
  • 7Wang B. Three - dimensional analysis of an ellipsoidal inclusion in piezoelectric material[J]. Int. J. Solids Struct., 1992,29:293-308.
  • 8Shi Weichen. Stress Singularity at the Tip of a Rigid Conducting Line in Dielectrics under Plane Electric Field[J]. International Journal of Fracture, 1995, 73 : 23 - 26.
  • 9Shi Weichen. Rigid line inclusions under anti - plane and inplane electric field in piezoelectric materials[J]. Engnag. Fract.Mech, 1997, 56:265 - 274.
  • 10Deng W, Meguid S.A. Analysis of conducting rigid inclusion at the interface of two dissimilar piezoelectric materials[J ]. ASMEJ. Appl. Mech. 1998, 65:76-84.

同被引文献33

  • 1MA拉甫伦捷夫 БА沙巴特.复变函数论方法[M].北京:高等教育出版社,1956..
  • 2郭丽辉,范天佑.准晶弹性理论边值问题的可解性[J].应用数学和力学,2007,28(8):949-957. 被引量:4
  • 3郭丽辉,范天佑.Solvability on boundary-value problems of elasticity of three-dimensional quasicrystals[J].Applied Mathematics and Mechanics(English Edition),2007,28(8):1061-1070. 被引量:1
  • 4Wu T L, Huang J H. Closed-form solutions for the magnetoelectriccoupling coefficients in fibrous composites with piezoelectric andpiezomagnetic phases [ J ]. International Journal of Solids anaStructures, 2000,37: 2981-3009.
  • 5Huang J H , Kuo W S. The analysis of piezoelectric/ piezomagneticComposite materials containing ellipsoidal inclusions [ J]. Journal ofApplied Physics, 1997,81 : 4889-4898.
  • 6Huang J L,Liu K H,Dai W L. The optimized fiber volume fractionfor magnetoelectric coupling effect in piezoelectric-piezomagneticcontinuous fiber reinforced composites [ J]. International Journal ofEngineering Science, 2000 , 38: 1207-1217.
  • 7Li J Y. Magnetoelectroelastic mutli-inclusion and inhomogeneityproblems and their applications in composite materials [ J ].International Journal of Engineering Science, 2000,38: 1993-2011.
  • 8Liu J X, Liu X G, Zhao Y B. Green’ s function for anisotropicmagnetoelectroelastic solids with an elliptical cavity or a crack [ J].International Journal of Engineering Science, 2001,39: 1405-1418.
  • 9Wang X,Shen Y P. The general solution of three-dimensionalproblems in magneto-electroelastic media [ J ]. International Journalof Engineering Science , 2002,40: 1069-1080.
  • 10Wang X, Shen Y P. Inclusions of arbitrary shape inmagnetoelectroelastic composite materials [ J]. International Journalof Engineering Science, 2003 , 41 : 85-102.

引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部