期刊文献+

混沌同步保密通信的同步鲁棒性研究

STUDY OF ROBUSTNESS OF SYNCHRONIZATION IN THE CHAOTIC SYNCHRONIZED SECURE COMMUNICATION
下载PDF
导出
摘要 用线性系统理论的方法对基于Lorenz系统的驱动—响应同步和主动—被动同步保密通信系统的同步鲁棒性进行了理论分析,对所得的同步误差模型做了计算机仿真研究,由此得到这两种同步方法的同步效果,后者的同步鲁棒性优于前者,同步效果理想,保密通信的信号恢复精度高,能够满足实用要求. The robustness of synchronization by the driveresponse method and the activepassive decomposition method in the Lorenz system was analyzed using control theory. The approximate analytical synchronization error models were established to describe the synchronization behaviors. The simulation results indicate that the activepassive decomposition synchronization is both more robust and better in signal recovery precision than driveresponse method, so it is more applicable.
出处 《北京工商大学学报(自然科学版)》 CAS 2003年第2期37-40,45,共5页 Journal of Beijing Technology and Business University:Natural Science Edition
基金 北京市自然科学基金资助项目(4002004)
关键词 保密通信 同步鲁棒性 混沌同步 同步误差 LORENZ系统 驱动-响应同步 主动-被动同步 chaos synchronization robustness secure communication
  • 相关文献

参考文献4

二级参考文献53

  • 1[1] National Bureau of Standards. FIPS PUB 46 Data Encryption Standards[S]. Washington DC : Federal Information Processing Standard, US Dept. Of Commerce, 1977.
  • 2[2]Revest R L, Shamir A, and Adleman L M. A method for obtaining digital signature and public-key cryptosystems[J]. Communications of the ACM, 1978,21:120~126.
  • 3[3]Diffie W and Hellman M F. New directions in cryptograghy[J]. IEEE Transactions in Information Theory, 1976,IT-22:644~654.
  • 4[4]ElGamal T. A public key cryptosystem and a signature scheme base on discret logarithm[A]. Advances in Cryptology, Proceedings of CRYPTO'84[C]. Berlin: Springer-Verlag Lecture Notes in Computer Science, 1985,196:10~18.
  • 5[5]Koblitz N. Elliptic curve cryptosystems[J].Mathematics of Computation, 1987,(48):203~209.
  • 6[6]Miller V S. Use of elliptic curves in cryptograghy[A]. Advances in Cryptology, Proceedings of CRYPTO'85[C]. Berlin: Springer-Verlag Lecture Notes in Computer Science, 1986,218:417~426.
  • 7[7]Fujisaka H and Yamada T. Stability theory of synchronized motion in coupled-oscillator systems[J]. Porg Theor Phys, 1983,69:32~47.
  • 8[8]Pecora L M and Carroll T L. Synchronization in chaotic systems[J]. Phys Rev Lett, 1990,64:821~823.
  • 9[9]Rulkov N F, Sushchik M M and Tsimring L S. Generalized synchronization of chaos in directionally coupled chaotic systems[J]. Phys Rev, 1995,E50:980~994.
  • 10[10]Maruli K and Lakshmanan M. Drive response scenario of chaos synchronization in identical nonlinear system[J]. Phys Rev, 1994,E49:4882~4885.

共引文献121

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部