期刊文献+

基于混合遗传算法的偶极子源定位的仿真计算

Simulation of the Hybrid Genetic Algorithm in Dipoles' Localization
下载PDF
导出
摘要 首先提出一种新的混合遗传算法。在基于实数编码的基础上,通过嵌入一个最速下降算子,结合遗传算法和最速下降法两者的优点,并引入模拟退火的思想,即可改善原算法的局部搜索能力,又能进一步提高优化效率。为了验证算法的可行性,通过对脑电偶极子源定位的仿真计算,证明所提出的新算法与其它优化算法相比,在达到最优解的效率上有了明显的提高。 A new hybrid genetic algorithm was introduced and discussed in detail on its basic principle,mathe-matic mechanism,characteristics and application. Based on real encoding, the hybrid genetic alogrithm integrated features of the standard genetic algorithm and the steepest descent method. It can effectively improve local search ability and achieve global optimal solutin in higher probability by adopted simulated annealing idea. The improved hybrid genetic alorithm was applied to dipoles localization in order to validate the rationality and robust of it. Result showed that convergence performance was greatly enhanced, compared with other traditional algorithms.
作者 刘祎 江国泰
出处 《上海生物医学工程》 CAS 2003年第2期13-16,共4页 Shanghai Journal of Biomedical Engineering
基金 国家自然科学基金(59937160)
关键词 混合适传算法 偶极子源定位 仿真计算 模拟退火 最速下降法 dipoles' localization the hybrid genetic algorithm the steepest descent method simulated annealing idea
  • 相关文献

参考文献5

  • 1Jiang G.T. Chen J. A Simulation Model and Tts Identification for Transmission Mechanism of Pain Information, 20th IEEE/EMBS. Vol. 20. No. 4, 1998: 2095-2098.
  • 2G. T. Jing. C. Y Li,“A kind of proof technique of electrical activity source localization in brain”, IEEE/APBME 2000,2000:9.
  • 3Zitzler E, Thiele L. “Mllti-Objective Evolutionary Algorithms; A Comparative Case Study And the Strength Pareto Approach”. IEEE Transactions of Evolutionary.Computation. 1999,3 (4) : 257-271.
  • 4C. Y. Li. G. H. Ouyang, G. T. Jiang: An Optimization Algorithm for Hurtless Location of Epilepsy Foci, 23 th IEEE/EMBS. 2.7.2-2, October 25-28. 2001.
  • 5Matsui K, Kosugo Y, “An Analysis on Genetic Algorithms Using Markov Processes with Rewards.” In:IEEE/SPSNNTC, 1996, 130-139.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部