期刊文献+

非线性规划中最小变化拟Newton方法的局部收敛性

THE LOCAL CONVERGENCE OF LEAST CHANGE QUASINEWTON METHODS FOR NONLINEAR PROGRAMMING PROBLEMS
原文传递
导出
摘要 <正> 考虑非线性规划问题:[1]和[4]曾讨论对某点x处的投影Hesse阵z(x)~T?_(xx)~2L(x,λ)z(x)进行变尺度校正算法的收敛性.假设f(x),c_i(x),i=1,…,t为二次连续可微函数,x~*为(1.1)的解,且在x~*处满足二阶充分性条件。 In this paper, the local convergence of the quasi-Newton methods of Colemanand Conn (1984) for the nonlinear programming problems is analysed, and the leastchange updates of Dennis and Schnabel(1979), and Grzegorski (1985) are used toapproximate the projected Hessian matrix of the Lagrangian function. Furthermore,it is demonstrated that the sequence {x_i} will converge 2-step Q-superlinearly to asolution x~*. The discussion includes fixed-scale and rescaled least change quasi-Newton updates, and their inverse quasi-Newton updates.
机构地区 南京大学
出处 《计算数学》 CSCD 北大核心 1992年第1期65-69,共5页 Mathematica Numerica Sinica
  • 相关文献

参考文献3

  • 1S. M. Grzegórski. Multilevel least-change Newton-like methods for equality constrained optimization problems[J] 1987,Mathematical Programming(1):91~116
  • 2Trond Steihaug. Local and superlinear convergence for truncated iterated projections methods[J] 1983,Mathematical Programming(2):176~190
  • 3Philip E. Gill,Walter Murray. Newton-type methods for unconstrained and linearly constrained optimization[J] 1974,Mathematical Programming(1):311~350

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部