摘要
§1.问题的分析 设Ω?R^2是一有界开区域,是定义在Ω上的椭圆算子,其中对X∈Ω,[a_(i·j)(X)]_i,j=1,2对称且一致正定;a_(ij)(X)分片连续且上,下有界,a(X)≥0.我们求解如下问题: Lu=f,在Ω中, u=0,在?Ω上, (1.1)其中f∈H^(-1)(Ω),u∈H_0~1(Ω).这里取齐次Dirichlet边界条件,仅仅是为了叙述问题的方便.(1.1)
In this paper, a domain decomposition method with two subregions and no overlaps isdiscussed. It is realized through an alternating procedure of parallelly solving two Dirichletproblems and two Neumann problems on subdomains. Firstly, the continuous problem is discus-sed and then it is shown how to use the method to solve finite element equations.
出处
《计算数学》
CSCD
北大核心
1992年第2期240-248,共9页
Mathematica Numerica Sinica