摘要
针对传统聚类算法处理非球形分布数据的不足,提出了一种新型的自适应K近邻 聚类算法。该算法由数据集归一化、初始类别构造和初始类别融合3个步骤构成。仿真结果 表明,该算法在无须聚类数目的前提下,对非球型分布数据具有很好的聚类效果。
To the shortage of traditional clustering algorithm when dealing dat a with non-spherical-shape distribution, a novel adaptive K near neighbor cluste ring algorithm is presented in this paper. This algorithm is made up of three pa rts: (a)uniform for data; (b) constitution of initial patterns; (c)fusion of in itial patterns. The simulation results show that this algorithm has good cluster ing performance for data with non-spherical-shape distribution without knowing t he number of clustering.
出处
《计算机工程》
CAS
CSCD
北大核心
2003年第11期21-22,165,共3页
Computer Engineering